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Abstract

Sketch recognition allows natural and efficient interaction in pen-based interfaces. A key obstacle to building accurate sketch
recognizers has been the difficulty of creating large amounts of annotated training data. Several authors have attempted to address
this issue by creating synthetic data, and by building tools that support efficient annotation. Two prominent sets of approaches
stand out from the rest of the crowd. They use interim classifiers trained with a small set of labeled data to aid the labeling of the
remainder of the data. The first set of approaches uses a classifier trained with a partially labeled dataset to automatically label
unlabeled instances. The others, based on active learning, save annotation effort by giving priority to labeling informative data
instances. The former is sub-optimal since it doesn’t prioritize the order of labeling to favor informative instances, while the latter
makes the strong assumption that unlabeled data comes in an already segmented form (i.e. the ink in the training data is already
assembled into groups forming isolated object instances). In this paper, we propose an active learning framework that combines the
strengths of these methods, while addressing their weaknesses. In particular, we propose two methods for deciding how batches of
unsegmented sketch scenes should be labeled. The first method, scene-wise selection, assesses the informativeness of each drawing
(sketch scene) as a whole, and asks the user to annotate all objects in the drawing. The latter, segment-wise selection, attempts more
precise targeting to locate informative fragments of drawings for user labeling. We show that both selection schemes outperform
random selection. Furthermore, we demonstrate that precise targeting yields superior performance. Overall, our approach allows
reaching top accuracy figures with up to 30% savings in annotation cost.
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1. Introduction

Sketch recognition has enabled computer graphics applica-
tions in a wide range of domains from education [1, 2] to design
[3, 4, 5]. A widely acknowledged problem standing in the way
of building accurate sketch recognizers has been the necessity
of obtaining large amounts of annotated data.

Researchers have tried to alleviate the cost of annotation
through a variety of strategies. For example, there has been
considerable work to build methods to learn from few exam-
ples. These include methods based on synthetic data genera-
tion [6], and self-learning [7]. Unfortunately these methods fall
short of delivering accuracy values that are attainable by label-
ing large sets of examples, hence they are sub-optimal. Others
have suggested improving the user experience of data annota-
tion through custom annotation interfaces [8, 9, 10, 11]. Yet
improving the user experience does not reduce the number of
items that have to be annotated.

Two methods in the literature aim to reduce the cost of an-
notation by actually reducing the number of instances that the
user is asked to annotate without sacrificing accuracy. The first
[12] utilizes auto-annotation while the other [13] is based on
active learning. Both methods attempt to reduce the number of
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required annotations with the help of classifiers trained with a
partially labeled dataset.

Auto-annotation automatically labels unlabeled data, and
asks the user to correct mislabeled instances. This method re-
quires the annotator to verify the labels for all instances. Fur-
thermore, unlike active learning, it does not harvest the benefits
of focusing the labeling effort on the more informative unla-
beled examples.

Active learning is a machine learning strategy that aims
to reduce the labeling effort by selecting the most informative
samples from a pool of unlabeled data. The AL process is ini-
tialized by training a classifier with a few labeled samples, the
so-called “seed set.” This classifier is used to assign class prob-
abilities to the unlabeled samples, which in turn is used to com-
pute the informativeness of the unlabeled instances. The user
labels the informative instances, and the classifier is gradually
improved by re-training with the extended set of labeled data.
The learning process continues in rounds until a target valida-
tion accuracy is achieved or until we run out of resources (e.g.
labeling time or computational resources). Active learning has
been shown to reduce annotation effort for segmented data [13].

Unfortunately, active learning assumes that the unlabeled
data has already been segmented. Extending active learning
to work with unsegmented data is nontrivial. There is lim-
ited amount of work using active learning for sequence labeling
and semantic segmentation. However, existing approaches as-
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sume that their input can be decomposed into primitive units
(e.g. super-pixels in computer vision, tokens in text), and carry
out labeling and active learning at the granularity of these units
[14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]. Here, active learn-
ing proceeds at the level of primitives, essentially similar to
how it would in the isolated active learning case, usually with
some additional constraints on pairwise primitives (e.g. through
Markov Random Fields or n-gram representations).

In this paper, we present a new active learning framework,
Active Scene Learning (ASL), which extends the state of the
art to handle unsegmented sketch scenes at the granularity of
entire objects. Our approach is designed as a continuous cycle
consisting of segmentation and annotation steps.

In the segmentation step, the unlabeled scenes in the dataset
are segmented using classifiers trained on partially labeled data.
This yields a set of isolated objects. We call these objects can-
didate objects, because the user is eventually asked to label in-
stances chosen among these candidates based on their informa-
tiveness. Note that the candidate objects are extracted using au-
tomated segmentation, hence the predicted boundaries, as well
as the class labels, may be erroneous.

The annotation step takes the output of the segmentation
process, and identifies entire scenes or parts of scenes to be
labeled by the user. We refer to these approaches as scene-
wise selection strategy, which prioritizes labeling informative
scenes; and segment-wise selection strategy, which prioritizes
labeling informative scene segments.

In this paper, we demonstrate that Active Scene Learning
helps annotation using sketch recognition as a case study. Our
results show that Active Scene Learning is effective in reducing
the cost of annotation. The results and the approach presented
in this paper open the avenue for applying active learning to
unsegmented data, and is of interest to practitioners of sketch
recognition as well as a broader community of practitioners
who rely on machine learning in their applications. Specifi-
cally, our main contributions can be listed as:

• We propose the Active Scene Learning (ASL) framework
to enable AL on scene data.

• We show that candidate objects carry valuable informa-
tion which can be utilized to guide AL even if they do not
have accurate segmentation boundaries.

• We propose two selection schemes under the ASL frame-
work, scene-wise selection and segment-wise selection,
and demonstrate that both schemes outperform random
selection.

• We demonstrate that precise-targeting with segment-wise
selection yields superior performance in comparison to
scene-wise selection.

• We show that ASL can reach top-accuracy figures with
up to 30% savings in annotation cost.

This paper is organized as follows: First, we introduce the
ASL framework and describe the scene-wise and segment-wise
selection schemes. In Section 3, we first describe the datasets

used in our experiments, then the details of our experimental de-
sign. In Section 4, we describe the evaluation metric employed
in our analysis and then present the analysis methodology. We
present the analysis results with a discussion in Section 5. Fi-
nally, we conclude with related work and a summary of future
research directions.

2. Active Scene Learning

Active Scene Learning (ASL) is a framework aiming to re-
duce annotation cost for a pool of unlabeled scenes by exploit-
ing active learning. A scene is composed of an arbitrary num-
ber of domain objects in arbitrary configurations. The key idea
behind ASL is to obtain annotation gains, when building a seg-
mentation solution, by utilizing information on candidate ob-
jects extracted via a segmentation algorithm.

2.1. Preliminaries and Definitions
In the sketching domain, a scene consists of a collection of

strokes. To ease the segmentation process, we break the strokes
into basic geometric primitives (e.g. arcs, lines etc.). The prim-
itives serve as the smallest unit of segmentation. At this point,
a sketch scene becomes a collection of primitives. The goal
of active scene learning is defined as grouping these primitives
(to form objects) accurately and assigning labels to the groups
(of primitives), with minimal user (annotator) effort. Consider
the example sketch scene in Figure 1a. It consists of 3 objects,
12 strokes and 17 primitives. Figure 1b shows four of the sev-
eral possible segmentations along with their candidate objects,
which may or may not match the ground truth. The mismatch
may be a result of incorrect segmentation or misclassification
of a correctly segmented group of primitives.

A scene S is composed of primitives p, and groups of primi-
tives (p) constitute objects Oi. Oi are ground truth objects while
Ci are candidate objects. Let S i = (O1,O2, ...,On) where n is
the number of ground truth objects in the scene. Also, let S i =

(p1, p2, ..., pk) where k is the number of primitives in the scene.
Assuming Oi = {p j, p j+1, ..., p j+r} and Ci = {ph, ph+1, ..., ph+q},
then Ci constitutes to a correctly segmented candidate iff j = h
and r = q. In other words, if a candidate object (a group of
primitives) extracted by the segmentation algorithm matches
each primitive of any ground truth object in the scene, we say
that it is a correctly segmented candidate object; otherwise call
it a mis-segmented candidate object.

In the following subsections, we present two ASL approaches:
scene-wise selection and segment-wise selection.

2.2. Scene-wise Selection
Scene-wise selection aims to assign an informativeness score

to each unlabeled scene in the pool after segmenting and recog-
nizing the contents. Then, it extends the training data with all
the objects in the selected scenes while using the boundaries
and labels for the ground truth objects in these scenes provided
by the annotator. Algorithm 1 depicts the generic methodol-
ogy for scene-wise selection. We have devised four methods
for computing a scene-wise informativeness score, described
below.
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(a) An example scene and its ground truth objects. (b) Four of several possible segmentations of the scene, described
by grouping primitives.

Figure 1: An illustration of a scene composed of its primitives (in this case, lines and arcs). An object constitutes to a group of primitives. A candidate object may
or may not match the ground truth object depending on the accuracy of the segmentation model.

Algorithm 1 Scene-wise selection

1: Initialize the model with the seed set (a set of labeled isolated objects).
2: repeat
3: Segment and recognize the scenes in the pool with the current model.
4: Compute scene informativeness scores with a desired scene-wise selection method.
5: repeat
6: Select the most informative unlabeled scene from the pool.
7: Request boundaries and labels for the ground truth objects in the scene.
8: Add all the objects in the scene to the training set.
9: Remove the scene from the pool.

10: until the batch is full
11: Re-train the model with the extended training set.
12: until the halting point is reached
13: return the model

Algorithm 2 Segment-wise selection

1: Initialize the model with the seed set.
2: repeat
3: Segment and recognize the scenes in the pool with the current model.
4: Compute informativeness score for each candidate object.
5: Create an empty set (“processed-set”) to keep track of processed candidate objects.
6: repeat
7: Select the highest scoring candidate object which is not in the “processed-set”
8: Request boundaries and labels for the ground truth objects intersecting with the current candidate object.
9: Add the ground truth objects to the training set if they are not already added (check though less likely).

10: Add the current candidate object to the “processed-set”.
11: until the batch is full
12: Re-train the model with the extended training set.
13: until the halting point is reached
14: return the model

3



2.2.1. Arithmetic Mean based Aggregation (ArM)
ArM is a simple method that combines informativeness scores

of candidate objects. Let Ck to be the set of candidate objects
extracted from a scene S i with length K. Let Ik be the infor-
mativeness score computed for the candidate object Ck. Then,
the scene score S S i is the arithmetic mean of the scores of the
candidate objects in the scene:

S S i =
1
K

K∑
k=1

Ik

2.2.2. Geometric Mean based Aggregation (GM)
GM penalizes scenes with uninformative candidate objects

more than ArM. Let Ck be the set of candidate objects extracted
from a scene S i with length K. Let Ik be the informativeness
score assigned to a candidate object Ck. Then, the scene score
S S i is the geometric mean of the scores of the candidate objects
in the scene:

S S i = (
K∏

i=1

Ik)
1
K

2.2.3. Maximum of the Scene Aggregation (MoS)
MoS sets the scene score to the informativeness score of the

candidate object with the maximum score. We expect MoS to
perform worse in the earlier rounds of AL, but allow a sharper
focus for final rounds when many candidate objects are unin-
formative. Let Ck be the set of candidate objects extracted from
a scene S i with length K. Let Ik be the informativeness score
computed for a candidate object Ck. Then, the scene score S S i

is defined as:
S S i = max

k=1,...,K
Ik

2.2.4. Aggregation based Scene Probability (SP)
SP focuses on scenes that are hardest to interpret. SP as-

signs scene score to one minus the probability of the most prob-
able interpretation of the scene. Let P(S i) be the probability of
the most probable interpretation of the scene S i. Then, scene
score S S i is:

S S i = 1 − P(S i)

2.3. Segment-wise Selection (SwS)

Scene-wise selection methods have several drawbacks. A
selected informative scene may contain uninformative candi-
date objects along with the informative ones. It is important to
note that the informativeness of a particular scene is conditional
on the classifier at hand. In the earlier rounds of active learn-
ing where we have a relatively weak classifier, most scenes are
likely to achieve high informativeness scores, and, if labeled,
would improve the recognizer at hand. In the later rounds, how-
ever, scenes become less informative. Furthermore, informative
scenes tend to contain a large fraction of uninformative objects.
Hence, it becomes imperative to identify the relatively more in-
formative scenes among many uninformative ones, and further-
more identify specific regions within the scenes that are likely
to contain the objects/regions that make the scenes informative.

Therefore, we propose segment-wise selection strategy, which
is depicted in Algorithm 2, to avoid such uninformative candi-
date objects.

Segment-wise selection (SwS) attempts precise targeting to
locate informative objects within the scenes. In particular, it
considers the candidate objects that the segmentation model
finds most difficult to segment and recognize. Then, it requests
boundaries and labels for the ground truth objects intersecting
the boundaries of the candidate object. Hence, SwS focuses on
scenes locally rather than asking annotation for all the objects
in the scene. Note that the candidate objects are still extracted
through global segmentation. Consequently, the informative-
ness scores are based on the results of the global segmentation.

3. Experimental Design

We first describe the datasets and the segmentation algo-
rithm employed in our experiments, and then explain the struc-
ture of our experimental design in this section.

3.1. Datasets

We conduct experiments on sketch scenes constructed from
the COAD and the NicIcon datasets. The COAD database con-
tains a total of 620 samples from 20 different symbol classes,
whereas the NicIcon database contains a total of 22958 samples
from 14 different classes.

We have a multi-phase scene generation approach, presented
in Algorithm 3, to obtain data matching our experimental de-
sign, which we elaborate on in Section 4. First, we prepare
folds, the so-called “combined-folds”, containing shuffled iso-
lated objects from each class. Each class contributes samples to
combined-folds in a balanced manner. Then, we obtain source
training and source test sets for each Repeat by shifting and
grouping these combined-folds. Finally, we create scenes (for
training and test) by sampling isolated objects from source train-
ing and source test sets.

For each Repeat in our experiment, we create 100 scenes
for both training and testing. A 100-scene set is composed of
scenes with varying number of objects (2-6 object scenes) such
that it contains 20 scenes for each.

3.2. Segmentation Solution

In our experiments, we employ Sezgin’s sketch segmenta-
tion method [25], which relies on dynamic programming. In
order to segment a given scene, we first convert it to a collec-
tion of primitives using Sezgin’s fragmentation algorithm [26].

Using the list of primitives, we construct a graph G(V, E) in
which vertices V correspond to the primitives, indexed by the
order in which they were drawn. The weight w(i, j) associated
with an edge from vi to v j in G corresponds to the probability
that the set of primitives between i and j constitutes a valid
and fully-drawn symbol. The optimal segmentation S (i, j) is
computed through dynamic programming:

S (i, j) = max

w(i,j)
maxi≤k< j(S (i, k).S (k, j))
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Algorithm 3 Synthetic Scene Generation

1: Create N equally sized folds for each class by random sampling (see Figure 2a).
2: Merge each respective fold from each class to obtain combined-folds (see Figure 2b).
3: for N Repeats (See Figure 3) do
4: Group isolated objects of first N-1 combined-folds to obtain source training set for current Repeat.
5: Assign Nth combined-fold as source test set for current Repeat.
6: Circular-shift combined-folds.
7: end for
8: for N Repeats do
9: Sample and remove S seeds from source training set.

10: Add seeds to seed set of current Repeat.
11: end for
12: for Each source training/test set do
13: for Each scene-size option k do
14: repeat
15: Randomly select k classes
16: Sample and remove an isolated object belonging to each class from corresponding source training/test set.
17: Compose a scene by utilizing these samples and add it to corresponding training/test scene set.
18: until desired number of scenes created for size k
19: end for
20: end for
21: return seed set, training scenes and test scenes for each Repeat

(a) Create folds from samples of a class. (b) Combine corresponding folds of each class.

Figure 2: For each class, divide the data into N folds by random sampling. Then, merge corresponding folds of each class into the so-called “Combined-folds”.
Note that combined folds are mutally exclusive.

Figure 3: Set aside one combined fold to create scenes for testing and use the remaining combined folds to create scenes for training. Circular shift the folds to
create source training/test set pairs for each Repeat (total of 5 repeats).
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Sezgin computes weights w(i, j) by combining an HMM
and a one-class SVM such that HMM predicts class probabil-
ity of the fragment groups, while one-class SVM determines
whether the fragment group constitutes a valid object or not.
Here, we employ a multi-class SVM to compute the weights.

3.3. Trials

A trial refers to the end-to-end process of active learning on
a training & test scene set pair. Throughout each trial, we mea-
sure the segmentation and recognition accuracy of the model.
We initialize each trial by training the classifier (SVM in our
case) with the seed set. Then, the process continues by extend-
ing the training set with the labels of the objects contained in
scenes or scene segments selected by the current active learn-
ing strategy. Then, the classifier is retrained with the extended
data. Pickling a scene, labeling data and retraining the classifier
is called a round. Active learning continues for several rounds
until a target accuracy is reached or until the user is satisfied.

We repeat our experiment 5 times with data prepared as de-
scribed in Section 3.1. Hence, each Repeat of the experiment
corresponds to a trial.

Throughout our experiments, we follow the AL guidelines
suggested by Yanık et al. We employ a multi-class SVM with
an RBF kernel along with IDM features as in [13]. We also
initialize our classifier with 4 samples from each class. At each
round of AL, we extend the training set by adding 3 scenes (12
objects on average) for scene-wise selection (and also for ran-
dom scene selection) and 12 objects for segment-wise selection.

4. Analysis

To evaluate the performance of active scene learning meth-
ods, we conducted statistical analysis as suggested in [13]. We
utilize the deficiency measure [13, 27] to assess the relative
performance of the ASL methods. The deficiency of method
A with respect to B, deficiency(A,B), is a standard measure of
the relative performance of the algorithms throughout the active
learning process (see Figure 4). Notice that in our experiments,
model accuracy is not the classification accuracy of isolated ob-
jects. Instead, model accuracy corresponds to segmentation and
recognition accuracy defined as the ratio of the number of cor-
rectly segmented objects with correct labels over the total num-
ber of objects over all test scenes.

In our experiments, the maximum accuracy line represents
the model accuracy when it is trained with all the objects com-
ing from the training scenes. An accuracy curve represents the
sequence of accuracies (over the test set) achieved in each round
of the active learning process after the model is trained with the
available labeled data. Let D = de f iciency(A, B) be the defi-
ciency of algorithm A computed with respect to algorithm B
(see Figure 4). D = 1 implies that the methods have a similar
performance. Values less than one imply that method A is su-
perior, while values greater than one imply that method B has
superior performance.

In order to assess the statistical significance of the differ-
ences in the deficiencies of different active learning setups, we

Figure 4: The deficiency is defined as the ratio of the area between the accuracy
curve of method A and the maximum accuracy line; and the area between the
accuracy curve of method B and the maximum accuracy line [13].

conducted multiway ANOVA tests. Throughout our analysis,
we performed Mauchy’s sphericity test to check whether the
variances of the differences between all possible group pairs
subject to ANOVA are equal. In cases where sphericity is vio-
lated, the degrees of freedom have been corrected by the Greenhouse-
Geisser correction. We also performed Levene’s test to check
the homogeneity of variances between groups and used trans-
formed values where appropriate. Bonferroni corrected paired
t-tests were performed as Post-Hoc tests, in order to explore the
mean differences across the levels of the concerned factors.

We conducted 2-way Mixed ANOVA with between group
variable dataset (with levels COAD and NicIcon) and within
group variable active scene learning strategy (with levels SwS,
GM, ArM, SP, MoS). The deficiency value was taken as the
dependent variable, which was computed for each active learner
with respect to the random learner (values less than 1 indicate
the active learning outperforming the random baseline).

5. Results

In this section, we present the results of our experiments.
In particular, we compare performance of active scene learning
methods against random selection and among each other. More-
over, we quantify the actual gains in annotation effort obtained
by active scene learning methods.

5.1. Effect of ASL strategy and dataset
We present the results of 2-way mixed ANOVA analysis on

our experiments in Table 1.
We observe a statistically significant effect of the choice

of active scene learning strategy on the performance of active
learning. This indicates that we should carefully select the ac-
tive learning method to obtain a desired performance. We present
a detailed discussion on the choice of ASL methods in the fol-
lowing subsections.

Another crucial observation is that dataset factor does not
have a statistically significant effect on active learning perfor-
mance. This is a positive result suggesting that the performance
of ASL methods is consistent across these two domains. This
is a good piece of news for practitioners of sketch recognition
in other domains.
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Table 1: F-scores and p-values for the factors of 2-way Mixed ANOVA analy-
sis. The choice of active scene learning method has a significant effect on the
performance. The choice of dataset does not have a significant effect on the
performance. It indicates that performances of ASL methods are robust across
the datasets.

Factor F-Score Sig.
ASL Method F(2.136,17.085)=10.614 p=0.001

Dataset F(1,8)=0.619 p=0.454

5.2. ASL vs Random Selection

For each active scene learning method, we compute defi-
ciency values against random selection. In Table 2, we present
the estimated marginal means and (95%) confidence intervals.
To have a (confidence) upper bound less than a deficiency value
of 1 indicates that active learning method confidently outper-
forms random selection. All active scene learning methods, ex-

Table 2: Estimated marginal means for active scene learning methods. SwS,
ArM, SP and MoS methods confidently outperform random selection strategy.

ASL Method Mean Std. Error
95% Confidence Interval

Lower Bound Upper Bound
SwS .747 .033 .670 .824
GM .894 .051 .777 1.011
ArM .833 .049 .720 .946
SP .846 .029 .779 .913

MoS .896 .032 .822 .971

cept GM, outperform random selection. Another observation
is that segment-wise selection has the smallest mean and upper
bound values among the other. This indicates that segment-wise
selection outperforms random selection much more confidently
than the other active scene learning methods.

5.3. Performance examination among ASL strategies

Table 1 shows statistical significance in the choice of active
scene learning strategy. Now, we further investigate how the
performance of ASL methods contributes to this. In particular,
we compare pairs of active scene learning methods to reveal
their relative effectiveness based on how they fare against ran-
dom selection.

In Table 3, we present the results of Bonferroni corrected
paired t-tests as Post-Hoc tests. Negative mean difference and
negative (confidence) upper bound indicates that there is a sig-
nificant difference in performances of the two methods and the
considered method (column I) confidently outperforms the other
(column J).

We observe that segment-wise selection confidently outper-
forms all other ASL methods, except ArM. This observation is
aligned with our expectation since segment-wise selection tar-
gets the most informative parts (objects) of the scenes while
scene-wise selection methods select all objects in a scene.

Another observation is that ArM confidently outperforms
GM. In addition, no significant difference in performance is ob-
served between ArM and other methods (SP and MoS). More-
over, there is no significant difference among GM, MoS and SP.

Overall, segment-wise selection and ArM outperform the
others, while segment-wise selection tends to perform better
than ArM.

5.4. Actual savings in the annotation effort

So far, we shared the results of our statistical analysis. To
complete the picture, we now present the actual savings achieved
by ASL methods. Figure 5 illustrates the interpolated mean ac-
curacies (over repeats) obtained with respect to the annotation
effort (i.e. the number of individual objects labeled on scenes
and added to the training set). In addition, the dotted horizontal
line depicts the mean accuracy (over repeats) when all data is
labeled.

For the COAD dataset, there are 80 seeds (4 samples from
each class) and 400 unlabeled objects over 100 scenes. Af-
ter initializing the model with 80 seeds, segment-wise selection
achieves the top accuracy (defined as the accuracy obtained by
training with all the data) by annotating 304 objects from train-
ing scenes. This is a 24% gain in annotation effort with respect
to labeling all data (400 objects). Also note that segment-wise
selection gets within 1% of the top accuracy by only labeling
40% of the data (see Figure 5a).

For the NicIcon dataset, there are 56 seeds (4 samples from
each class) and 400 unlabeled objects over 100 scenes. Af-
ter initializing the model with 56 seeds, segment-wise selection
obtains the top accuracy (achieved by training with all data)
by annotating 277 objects from training scenes. This is a 30%
gain in annotation effort with respect to labeling all data (400
objects).

Active scene learning, specifically segment-wise selection,
saves up to 30% in annotation effort in our experiments.

6. Discussion

In this section, we provide a further discussion of the ex-
periment results. This discussion will contribute to a sound
understanding of the presented active scene learning methods
through a deeper analysis.

6.1. Effect of targeted selection

The strategy of segment-wise selection is based on targeting
the most informative parts of scenes. We presented the effective
performance of segment-wise selection in Section 5. Now, we
extend our discussion to describe why targeting selection strate-
gies is a desirable approach.

As segmentation model gets stronger, informativeness car-
ried by the scenes drops since the model gets more confident
in the segmented candidate objects. Confidently segmented ob-
jects contribute little if any to the performance of the model.
Especially in the later rounds, finding an informative data in-
stance turns into a hunt over all the scenes. Therefore, utilizing
segment-wise selection in later rounds of AL or when the model
confidence is high is definitely recommended.

In Figure 5, we observe that MoS method obtains the high-
est possible accuracies sooner than the other scene-wise selec-
tion methods although it falls behind them till the later rounds.
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Table 3: Bonferroni corrected paired t-test results for active scene learning methods. Having a mean difference smaller than zero (with Sig.<0.05) indicates that a
method performs significantly better (confidently has a smaller deficiency value) than the reference method. Segment-wise selection outperforms GM, SP and MoS
methods. It also tends to perform better than ArM method, but there is no statistical significance is observed in the difference between their performances.

(I) ASL Method (J) ASL Method Mean Difference (I-J) Std. Error Sig.
95% Confidence Interval for Difference
Lower Bound Upper Bound

SwS

GM -.147* .035 .032 -.283 -.011
ArM -.086 .034 .356 -.218 .045
SP -.099* .021 .014 -.179 -.020

MoS -.150* .023 .002 -.237 -.062

GM

SwS .147* .035 .032 .011 .283
ArM .061* .015 .042 .002 .120
SP .048 .026 1.000 -.053 .148

MoS -.003 .027 1.000 -.106 .101

ArM

SwS .086 .034 .356 -.045 .218
GM -.061* .015 .042 -.120 -.002
SP -.013 .024 1.000 -.104 .078

MoS -.063 .031 .775 -.184 .057

SP

SwS .099* .021 .014 .020 .179
GM -.048 .026 1.000 -.148 .053
ArM .013 .024 1.000 -.078 .104
MoS -.050 .020 .379 -.128 .027

MoS

SwS .150* .023 .002 .062 .237
GM .003 .027 1.000 -.101 .106
ArM .063 .031 .775 -.057 .184
SP .050 .020 .379 -.027 .128

This observation also supports the claim above. MoS searches
for scenes which contains the most informative candidate ob-
ject. In contrast, other scene-wise methods estimate scene score
by considering all the candidate objects or the overall interpre-
tation probability. As the number of informative samples de-
creases in the later rounds, focusing on the individual scores of
the candidate objects, rather than the scene scores, contributes
much more to the model’s accuracy. In this sense, MoS is in the
spirit of segment-wise selection due to its ability to target par-
ticularly informative object instances; but requiring additional,
possibly useless, annotation effort for labeling uninformative
objects that accompany the informative one in the scene.

6.2. Effect of dataset difficulty

Another interesting observation for segment-wise selection
is that its superiority over scene-wise selection methods may
be more pronounced, when the dataset is easier to learn. [13]
suggests that the NicIcon dataset is more challenging than the
COAD dataset. Hence, scene sets created over these datasets
allow us to compare and contrast the performance of ASL on
a challenging dataset and a relatively easier one. We observe
that segment-wise selection competes with scene-wise selection
methods and surpasses them in the later rounds for the NicIcon
data. For the COAD data, it always keeps performing above
scene-wise selection methods until convergence.

It is reasonable to assume that a sample will be more rep-
resentative of the others if the style variation in the dataset is
smaller. Hence, such a set can be said to contain many redun-
dant samples. Then, a targeting-based strategy such as segment-
wise selection will avoid such redundant samples throughout
the AL process and will achieve the top accuracies sooner. There-
fore, having prior knowledge about the representativeness of the
samples in the dataset might allow AL practitioners to apply ac-
tive scene learning more effectively.

Another observation is that the number of classes in a dataset
also affects the required amount of annotated data. When top
accuracies are obtained, the average number of annotated ob-
jects (excluding seeds) per class are 15 for COAD scenes and
20 for NicIcon scenes. In other words, we obtained top accu-
racies by labeling 25% fewer examples for the COAD scenes.
This is in accordance with the claim [13] that NicIcon dataset
is more challenging than COAD dataset.

We also observe that segment-wise selection slightly steps
above the top accuracy that can be obtained when all the data is
labeled, for NicIcon scenes. We suspect that the model learned
a slightly more general classifier by focusing on few but care-
fully selected samples.

6.3. Effect of hard penalties
We observe, from Table 1 and Table 2, that GM performs

poorly against random selection and other ASL methods. When
we investigate Figure 5, we see that it competes well against the
other ASL methods and outperforms random selection till the
later rounds of AL. However, in the later rounds it flattens out
and stays behind even random selection. We suspect that it is
due to the hard punishment of GM. Unlike ArM, it penalizes
scenes drastically especially when there is at least one candi-
date object with very low (close to zero) informativeness. We
can expect that the model is very poor in the earlier rounds and
it has low confidence in the segmentation of the scenes, yield-
ing informative candidate objects. However, as the model gets
stronger through AL rounds, it will segment the scene more
confidently. Even a single confidently segmented candidate ob-
ject in a scene reduces the informativeness of the scene to a
value close to zero. Hence, it is no surprise that GM flattens out
in later rounds. This observation suggests that either we should
avoid hard penalties for the scenes or we should carefully apply
hard penalties and consider switching to another ASL strategy
when appropriate.
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(a) COAD scenes (b) NicIcon scenes

Figure 5: Interpolated mean (segmentation and recognition) accuracy plots for COAD and NicIcon scenes. Active scene learning methods outperform random
selection strategy. Moreover, segment-wise selection performs superior than scene-wise selection methods.

6.4. A note on tendencies for scene-length

We observe from Figure 5 that scene-wise selection meth-
ods might have varying tendencies due to scene-length. As il-
lustrated in Figure 5, GM tends complete the AL process (25-
rounds) with fewer labeled data while SP tends to complete
the process (25-rounds) with more labeled data than the other
scene-wise selection methods.

For SP, as the number of (candidate) objects in the scene in-
creases, the interpretation probability will decrease, especially
with a weak model (See Section 3.2). Therefore, scenes with
more objects may have a higher informativeness score (See Sec-
tion 2.2.4). Then, it is expected for SP to tend to select scenes
with more objects. For GM, computing the geometric mean for
scenes with more objects may tend to yield smaller informa-
tiveness values, especially when the scenes contain many un-
informative candidate objects. These observations indicate that
adjusting informativeness scores based on the number of ob-
jects detected in a scene might be helpful especially when the
scene-lengths varies too much in a dataset.

7. Related Work

In this paper, we presented a new active learning framework
which reduces the annotation effort required to generate an ac-
curate system for scene segmentation. We proposed two selec-
tion schemes under the ASL framework and investigated their
variants. Then, we demonstrated their effective performance by
analyzing how they fare against random selection and among
each other.

There are several custom interfaces [8, 9, 10, 11] for la-
beling sketch data in the literature. Although the user friendly
interfaces ease the annotation process, they do not consider re-
ducing the number of samples to be labeled.

Work by Plimmer et al. [12] proposes to use auto-labeling
to automatically annotate unlabeled samples. They use a clas-

sifier trained with partially labeled dataset to automatically an-
notate unlabeled samples. Unfortunately, it is known that not
all unlabeled examples are equally useful (some carry redun-
dant information, whereas others are more informative). This
method lacks a mechanism for deciding which samples should
be labeled first to gain maximum benefit. This leads to sub-
optimal use of the valuable annotation resources. Furthermore,
without a sufficiently accurate classifier, auto-annotation is prone
to yield incorrect labels, hence a manual label validation and
correction effort is required.

Yanık and Sezgin [13] demonstrate effective use of active
learning for sketch recognition. Although they conduct a rigor-
ous statistical analysis to investigate factors affecting AL per-
formance, and provide the community valuable insight on the
use of AL, their work focuses on applying AL on isolated sketch
recognition rather than scenes. Hence, our work fills this niche
and enables practitioners to use AL on scene data.

There are lines of work utilizing active learning for im-
age segmentation including domains such as CT-Scans [14, 15,
16], 3D images [15, 16] and hyper/multi-spectral images [17].
While some of these [14, 15, 16, 17, 18] apply AL on seman-
tic segmentation, others [19, 20, 21, 22] focus on foreground
extraction (object segmentation). However, these approaches
compute informativeness at fine levels of granularity such as
pixels, super-pixels, regions, voxels [15], (3D) slices [16], and
tokens [23, 24]. These approaches advocate a primitive-based
labeling strategy (as opposed the holistic approach we take).
Rather than identifying whole objects, and assigning labels to
all primitives of an object at once, labeling is performed over
individual super-pixels, tokens or primitives that constitute the
scene.

The superpixel level approaches have two serious limita-
tions. First, they assume that individual super-pixels carry sub-
stantial information to allow reasonable superpixel level classi-
fication. This assumption may hold in limited scenarios such

9



as background segmentation where the foreground and back-
ground super-pixels have distinct intensity, color and texture
statistics to allow training superpixel level classifiers. For sparse
inputs, as in the case of sketches, primitives (such as stroke
fragments or geometric primitives) are highly generic, and primitive-
level prediction of object classes has proved impractical. Hence,
we advocate training object-level classifiers, and perform active
scene segmentation at the object granularity.

Second, from a user interaction point of view, annotation at
the granularity of super-pixels is highly impractical. A single
object may consist of hundreds of super-pixels. Active learn-
ing at this granularity is bound to require far more annotator
interventions compared to the holistic case where actions are
taken at the object level. For example, [18] shows that reaching
97% of the performance of the fully supervised accuracy re-
quires 17% of the super-pixels to be annotated. At the 17%
ratio, one might as well label the entire dataset without any
active learning, since it would actually require fewer annota-
tion actions, unless one is operating in a domain where objects
have fewer than 6 super-pixels on average. For computer vision
problems, oversegmentation without leakage (undersegmenta-
tion error [28]) is bound to require orders of magnitude more
super-pixels, which makes pixel-based active learning more costly
than plain annotation in practice.

There is also some work applying AL on sequence labeling
[23] and structured output spaces [24]. Again, these systems
operate at the granularity of primitives (i.e. tokens), which are
readily available in the form of words.

In other lines of work, Vijayanarasimhan et al. [29] and Set-
tles et al. [30, 31] apply AL on multi-instance learning (MIL)
task for image and text categorization. Although the bags in
MIL contain more than a single object (e.g. search engine re-
sults) or an object with smaller parts (e.g. image segments and
text passages), there is no notion of building a model targeting
segmentation. Their aim is to figure out how much a sample
contributes to the label (decision) of the bag. Unlike applying
AL on MIL, we focus on building an accurate segmentation
and recognition model for scenes containing arbitrary number
of objects in arbitrary configurations. Moreover, we show that
our framework can reduce the amount of data to be labeled dras-
tically and can still reach top accuracy figures.

8. Future Work

In this paper, we presented an active scene learning frame-
work to enable AL on scene data. We propose segment-wise
selection and scene-wise selection. Future work may contribute
new selection schemes and informativeness measures under Ac-
tive Scene Learning framework in several ways. Introducing
batch selection strategies may improve both segment-wise and
scene-wise selection schemes. For scene-wise selection, weight-
ing several informativeness measures might overcome draw-
backs of individually computing these informativeness mea-
sures, especially with a dynamic weight update strategy. Fur-
thermore, a mechanism for dynamically updating weights or
switching among informativeness measures require a compre-
hensive investigation of a variety of factors.

We observed that ASL methods may have tendencies to
favor scenes with more/fewer objects. Investigating extreme
cases when too many or too few objects exist in all scenes might
provide a better understanding of whether such tendency has a
strong effect on performances of the ASL methods. In addition,
proposing strategies for adjusting informativeness scores based
on the number of (candidate) objects in the scene may make
ASL methods more robust to variations in the scene length.

We utilized a dynamic programming based segmentation
solution in our experiments. It would be interesting and com-
plementary to apply ASL methods along with various other seg-
mentation methods as well.

9. Summary

We presented the Active Scene Learning framework to en-
able use of active learning on unsegmented data. In particu-
lar, we investigated whether candidate objects produced by seg-
mentation carry sufficient information to benefit from applying
active learning. In the course of doing so, we proposed 2 selec-
tion schemes (namely segment-wise selection and scene-wise
selection), then we demonstrated the usability and the effec-
tiveness of the ASL framework through an empirical analysis as
suggested in the literature [13]. We observed that ASL meth-
ods confidently outperform random selection, and also obtain
up to 30% gain in annotation effort to achieve top accuracy fig-
ures. By filling the niche in the active learning literature, ASL
framework allows application of AL on a broader range of ap-
plications.

We suggested several basic informativeness measures un-
der scene-wise selection scheme. Then, we examined perfor-
mances of these scene-wise selection methods along with per-
formances of segment-wise selection and random selection strate-
gies via a statistical analysis followed by a detailed discussion.
We demonstrated that targeting specific parts of scenes during
the active learning process yields superior performance. More-
over, we showed that segment-wise selection is a preferable se-
lection strategy in comparison to scene-wise selection methods
and random selection due to its ability to target a specific part
of a scene.

We provided a detailed discussion of our experimental re-
sults, which we hope, will serve as a valuable guide for active
learning practitioners. Our work draws attention to several im-
portant factors which may have effect on ASL methods; such as
(style) variation in data, hard penalties for computing scene in-
formativeness and tendencies towards scenes with more/fewer
objects. We foresee that such a detailed discussion along with
the results of our statistical analysis will serve as guidelines for
the community members as they design, apply and evaluate new
ASL methods.
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[25] Arandjelović R, Sezgin TM. Sketch recognition by fusion of temporal

and image-based features. Pattern Recogn 2011;44(6):1225–34. doi:
\bibinfo{doi}{10.1016/j.patcog.2010.11.006}. URL http://dx.doi.

org/10.1016/j.patcog.2010.11.006.
[26] Tmen RS, Sezgin TM. Dpfrag: Trainable stroke fragmentation based

on dynamic programming. IEEE Computer Graphics and Applications
2013;33(5):59–67. doi:\bibinfo{doi}{10.1109/MCG.2012.124}.

[27] Baram Y, El-Yaniv R, Luz K. Online choice of active learning algorithms.
J Mach Learn Res 2004;5:255–91.

[28] Stutz D, Hermans A, Leibe B. Superpixels: An evaluation
of the state-of-the-art. Computer Vision and Image Understand-
ing 2018;166:1 – 27. doi:\bibinfo{doi}{https://doi.org/10.1016/j.cviu.
2017.03.007}. URL http://www.sciencedirect.com/science/

article/pii/S1077314217300589.
[29] Vijayanarasimhan S, Grauman K. Multi-level active prediction of useful

image annotations for recognition. In: Koller D, Schuurmans D, Bengio
Y, Bottou L, editors. NIPS. Curran Associates, Inc; 2008, p. 1705–12.

[30] Settles B. From theories to queries. Journal of Machine Learning Re-
search - Proceedings Track 2011;16:1–18.

[31] Settles B, Craven M, Ray S. Multiple-instance active learning. In:
Proceedings of the 20th International Conference on Neural Informa-
tion Processing Systems. NIPS’07; USA: Curran Associates Inc. ISBN
978-1-60560-352-0; 2007, p. 1289–96. URL http://dl.acm.org/

citation.cfm?id=2981562.2981724.

Erelcan Yanık received his bachelor’s degree from Koç Uni-
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