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Abstract

Sketch recognition is the task of converting hand-drawn digital ink into symbolic computer representations. Since the early days
of sketch recognition, the bulk of the work in the field focused on building accurate recognition algorithms for specific domains,
and well defined data sets. Recognition methods explored so far have been developed and evaluated using standard machine
learning pipelines and have consequently been built over many simplifying assumptions. For example, existing frameworks assume
the presence of a fixed set of symbol classes, and the availability of plenty of annotated examples. However, in practice, these
assumptions do not hold. In reality, the designer of a sketch recognition system starts with no labeled data at all, and faces the
burden of data annotation. In this work, we propose to alleviate the burden of annotation by building systems that can learn from
very few labeled examples, and large amounts of unlabeled data. Our systems perform self-learning by automatically extending a
very small set of labeled examples with new examples extracted from unlabeled sketches. The end result is a sufficiently large set of
labeled training data, which can subsequently be used to train classifiers. We present four self-learning methods with varying levels
of implementation difficulty and runtime complexities. One of these methods leverages contextual co-occurrence patterns to build
verifiably more diverse set of training instances. Rigorous experiments with large sets of data demonstrate that this novel approach
based on exploiting contextual information leads to significant leaps in recognition performance. As a side contribution, we also
demonstrate the utility of bagging for sketch recognition in imbalanced data sets with few positive examples and many outliers.
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1. Introduction1

Hand-drawn sketches are ubiquitous in design, arts, edu-2

cation and entertainment. More recently sketching has also3

been receiving attention as a natural human-computer interac-4

tion modality as seen from the continually increasing body of5

work on automated sketch recognition.6

Sketch recognition is defined as the task of segmenting a7

full sketch into individual groups of ink representing domain8

symbols, and assigning labels denoting classes. State of the art9

approaches to sketch recognition are predominantly based on10

machine learning technologies. However, the development and11

evaluation of these algorithms have traditionally been carried12

out with strong assumptions that do not hold in practice.13

For example, it is generally assumed that sufficiently large14

set of annotated symbols are readily available for training clas-15

sifiers. In practice, however, such data is generally unavailable.16

Moving into a new domain requires the designer of the sketch17

recognition system to create an annotated data set. This is done18

either by collecting isolated instances of symbols from users19

[1, 2, 3, 4, 5], or by annotating full sketches [6, 7] (i.e., sketches20

consisting of multiple symbols). Both cases require substantial21
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annotation effort. In this paper, we propose methods for train-22

ing sketch recognizers using only a few (1-3) labeled examples.23

We do so by leveraging large sets of unlabeled examples. This24

ability of the proposed framework allows users of the system to25

define their own classes for an unlabeled data set on-fly, which26

offers great flexibility.27

Although our main contribution addresses learning with few28

examples, our setup also challenges other assumptions in the29

field. It is generally assumed that recognizers will only be tested30

on symbols strictly within the domain of interest. This assump-31

tion manifests itself through the use of crisp multi-class data32

sets, or in the form of drawing instructions for users where they33

are first briefed about the set of available domain objects, and34

told not to use any symbols outside this restricted set. Hence,35

evaluation results in the literature are all reported in a multi-36

class classification setting where the knowledge of all classes37

are available. However, real drawings usually contain a large38

number of objects, marks, and writing that are irrelevant for the39

domain, and act as outliers. The learning framework we de-40

scribe explicitly abstains from crisp data assumptions, and is41

evaluated with realistic sketch data containing many outliers.42

Our approach is technically a semi-supervised method per-43

forming self-learning. Self-learning refers to using some amount44

of labeled data to label unlabeled instances, and training a clas-45

sifier with the extended set of labeled instances. Generally self-46
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learners start with an initial seed set of 10 or more labeled ex-47

amples per class, and extend the training data. However, we48

target very few examples (1-3 labeled examples). This results49

in two main challenges. First, with only 1-3 items in the initial50

list of labeled examples, it becomes essential that any additional51

items brought into the list do indeed belong to the correct class.52

Even a few incorrectly labeled examples can cause catastrophic53

drops in recognizer performance. Second, it is extremely im-54

portant to ensure that the additional labeled items are not too55

similar to the existing examples. New labeled examples help56

only if they are diverse and carry variations. We show that a57

context-based selection criterion promotes diversity. The key58

insight that we bring is to give precedence to candidate exam-59

ples that not only have the appearance of the class of interest,60

but also appear in contexts that are typically observed for the61

object of interest. This scheme favors diversity.62

Learning from few examples also poses a data imbalance63

challenge. The number of positive examples are multiple or-64

ders of magnitude smaller than the number of negative and un-65

labeled examples. We address this issue through bagging (boot-66

strap aggregation).67

Finally, we successfully adopt a Viola-Jones-like filtering68

scheme to speed up the self-learning process for large data sets.69

The filtering acts as a conservative rejection mechanism that70

excludes irrelevant unlabeled instances from the self-learning71

pipeline.72

The focus on learning from very few examples distinguishes73

our work from others. The context-based self learning method74

is our main contribution. We demonstrate the utility of this75

approach through its ability to accurately select diverse exam-76

ples for training sketch recognizers. Successful incorporation77

of bagging and conservative rejection serve as two additional78

contributions.79

In the rest of the paper, we first put our work into perspec-80

tive by discussing the related work from the sketch recogni-81

tion domain. Since the use of realistic data is one of the core82

contributions of our work, we describe the in-the-wild sketch83

data set that we use in Section 3. We measure the feasibility84

of self-learning through many repeated experiments designed85

to mimic what would have happened if the process had started86

with various initial conditions. The Experimental Setup section87

describes the end-to-end pipeline for self learning, including the88

details of data preparation, and metrics for performance mea-89

surement. Section 5 describes the details of our context-based90

self-learning algorithm, along with three others. We report our91

findings in the Results section, conclude with a discussion of92

the main findings, a summary of our contributions and direc-93

tions for future work.94

2. Related Work95

The historical progression of interest in sketch recognition96

started with investigation of knowledge-based and model-based97

recognition systems with no elements of machine learning [8, 9,98

10, 11]. The focus later shifted to approaches based on machine99

learning. These methods proved to be superior, and the field en-100

joyed steady progress in feature representations and recognition101

architectures. It is only recently that the interest has shifted to102

alleviating the difficulties associated with approaches based on103

machine learning. Below we discuss how our work fits in this104

vast body of work on sketch recognition.105

The early work on sketch recognition focused on building106

rule-based recognition algorithms. These approaches combined107

structural descriptions of symbols with efficient matching algo-108

rithms and rule-based interpretation architectures for recogni-109

tion [8, 9, 10, 11]. Rather than learning from examples, they use110

knowledge based object models. For example, Mahoney et-al.111

[8] propose structural descriptions that describe domain objects112

in terms of connections and constraints defined over line seg-113

ments, and use sub graph isomorphism for recognition [8]. Sez-114

gin et-al. propose automatic generation of recognizer code from115

structural descriptions of domain objects [9]. Veselova and116

Hammond et-al. take the idea of structural descriptions further117

by defining a formal symbol representation language [11] and a118

perceptually inspired method for generating object descriptions119

from single hand-drawn examples [10]. The work of Veselova120

et-al. is in the same spirit as ours in the attempt to learn from121

few examples, however we operate within a machine-learning-122

based framework, and try to exploit unlabeled data.123

With the development of powerful feature representations124

for sketches, recognition frameworks based on machine learn-125

ing gained dominance [12, 13, 14, 2, 3]. These methods were126

developed and evaluated within the standard train/validate/test127

machine learning pipeline, and our work aims to address the128

limitations induced by the assumptions of these systems. These129

and many others ([1, 4, 5]) assume fully labeled training data130

sets consisting of isolated hand-drawn symbols instances. They131

assume a predetermined set of object categories, and focus on132

performance indicators measured over isolated symbols or scenes133

consisting of domain objects only. In contrast, we focus on134

learning from few examples, while symbols are not isolated135

(i.e. there exists multiple symbols in a sketch), and exploit-136

ing unlabeled data. Most of the work supporting sketch scenes137

with multiple objects assume that each object is drawn with a138

single stroke [15, 16]. While this assumption both reduces the139

complexity and increases the success rate of the techniques, it140

forces users to change their sketching style which affects us-141

ability negatively. To address this issue, our system follows a142

fragment-and-combine approach similar to [17].143

The most relevant pieces of work to ours are those that try144

to exploit unlabeled examples [15, 18, 19]. All these systems145

assume a small seed set of labeled examples, and try to ex-146

tend the number of labeled instances by automatically label-147

ing unlabeled examples with the user in the loop. Technically148

these methods are active learning approaches, since they require149

user supervision. They starts with a low number of labeled in-150

stances, and allow the labeling of the mis-recognized instances151

[15], or ask for specific instances to be labeled [19] by the user.152

Unlike these, we do not rely on the user for labeling. We start153

with very few labeled instances and continue in a fully auto-154

mated fashion. This makes the problem more challenging, since155

no user intervention is possible in case of errors in automatic in-156

stance labeling. Furthermore, these approaches mostly assume157

that the unlabeled data is already segmented, an assumption we158

2



explicitly avoid.159

Within the machine learning and computer vision literature,160

there are plenty of approaches for zero shot learning, one shot161

learning, and transfer learning [20]. These approaches rely on162

attributes that serve as reusable models of object properties.163

Models for new objects are subsequently defined in terms of164

the previously learned attributes [21, 20]. Examples of work165

along these lines in the sketch recognition community include166

the work of Alvarado and Shilman et-al. [22, 23]. They model167

subparts of domain objects using distributions over features and168

reuse this information to build generative graphical models. These169

approaches have been disadvantaged by high computational re-170

quirements, and lower recognition rates compared to the learning-171

based approaches that came later (e.g., [12, 3, 24]). Further-172

more, the inherently sparse, and ambiguous nature of sketches173

renders the tuning process of these generative models an art.174

One notable transfer learning technique by Miller et-al. [25]175

proposes an alignment-based technique that works with a single176

example. The technique learns a probability density over the177

parameters of a family of affine transforms computed for a data178

set of many known symbols, and uses the estimated density to179

build a single-example classifier. This approach does not utilize180

unlabeled examples, however we include an algorithm inspired181

by the technique as a baseline in our evaluation.182

Our method is similar to a number of other methods in their183

use of context, (e.g., [26, 27, 28]). However, we perform self-184

learning and not recognition.185

Finally, there are feature representations and distance-based186

approaches for single stroke [24, 29] and multi-stroke [30, 31,187

32, 33, 12, 2] gesture/symbol recognition. These methods do188

not exploit unlabeled data, and are generally used with many189

training examples within the traditional machine learning setup.190

However, they also serve as good feature representations. Hence,191

they can conceivably be modified to compute distances to build192

robust single-example classifiers in a nearest neighbor classifi-193

cation setup. To shed light into their efficacy in recognition, we194

include methods based on the well established Image Deforma-195

tion Model (IDM) feature [34] in our evaluation.196

3. Data set197

In this work, we make a conscious effort to use realistic198

sketches collected under naturalistic settings and used the Q&A199

data set [35]. This data set contains a total of 1522 sketches200

produced in response to 7 basic maths, physics, and computer201

science questions collected from groups of high-school and col-202

lege students (number of drawings per question type and exam-203

ple sketches are given in Tables 1, and Figure 1).204

The data set has five key properties making it realistic, hence205

amplifying the creditability and validity of our results. First, the206

sketches were collected in the wild at schools, from students207

who were asked to answer questions accordant with their grade208

level in their natural environments. Hence, they are more rep-209

resentative compared to drawings collected through controlled210

laboratory settings or mechanical Turk setups [1, 3, 4]. Second,211

sketches in this data set were collected using tablets equipped212

Question type Number of sketches
Balance 463
Money 379
Reflection 289
Circuit 1 112
Circuit 2 110
Tree 47
Box-Pointer 122
Total 1522

Table 1: Number of sketches for various types of drawings.

Table 2: Target symbol classes used in our experiments.

with proper styluses, and not painted with a mouse as in the case213

of mechanical Turk setups. Third, the students were given writ-214

ten questions and asked to produce freehand drawings describ-215

ing their answer, resulting in substantial variation in sketches216

very much in the spirit of the work by Adler and Davis [36].217

Fourth, the data set contains only one sketch per question from218

each participant, hence avoids duplicates. Fifth, the data set219

contains full sketches and not individual symbols. Furthermore,220

since there was no restriction on the set of symbols used in the221

drawings, they contain substantial amount of handwriting and222

outlier symbols. The self-learning experiments in this paper223

were carried out for symbol classes shown in Table 2.224

Our system makes three assumptions on the data set. (1)225

First assumption is interspersing. As we utilize both temporal226

and spatial information of sketches, interspersing is not allowed227

(i.e. starting a symbol before finishing another). (2) We assume228

that two instances are members of the same symbol only if they229

share the same, or very similar, orientation. This is essential for230

the data set we use as the same shapes with different orientation231

have different semantics. (3) The last assumption we make on232

data is over-tracing. We assume that there are no over-traced233

symbols in the data set. Although there are studies handling234

over-tracing, our data set is a solid example showing that people235

do not over-trace much in certain kinds of sketches.236
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Figure 1: Example sketches from the data set used in our experiments.
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4. Experimental Setup237

Our main contribution is a context-based self learning algo-238

rithm for learning from few examples. We compare this al-239

gorithm to a host of other alternatives, including variants of240

nearest neighbor self learners combined with the state of the241

art feature representations, and an approach based on artificial242

instance generation. In order to assess the relative merits of243

these approaches, we run several experiments initialized with244

the same initial conditions. All these experiments are carried245

out with the execution pipeline shown in Figure 2. The pipeline246

consists of four stages: 1) Candidate Extraction, 2) Conserva-247

tive Rejection, 3) Self-learning 4) Performance Measurement.248

Technically, the job of the self learner is to train a binary249

classifier for a target symbol (one from Table 2) using unlabeled250

full sketches. As a first step, we extract symbol candidates251

from full sketches for use in the subsequent self-learning stages.252

Stage two discards a subset of the unlabeled symbol candidates253

that we can confidently declare as not representing the symbol254

of interest. In the third stage, we perform self-learning, and in255

the fourth stage we measure the performance of the classifier256

obtained through self learning. Now we describe each stage in257

detail.258

4.1. Candidate Extraction259

The input to the self-learning pipeline is 1-3 instances of260

the target symbol class, and a group of unlabeled sketches. The261

goal is to find further instances of the target symbol in the unla-262

beled sketches, and train a binary classifier on all the instances.263

However, identifying further instances of the target symbol264

in sketches is hard, primarily because the sketch is simply a265

collection of strokes, and conceivably any subset of the strokes266

could be representing an instance of the target symbol. It is not267

known a priori which subsets of the strokes represent meaning-268

ful objects, hence technically each and every possible grouping269

of the strokes is a potential instance of the target class.270

The purpose of candidate extraction is to build a list of sym-271

bol candidates by extracting groups of ink from the unlabeled272

sketches that can conceivably be an instance of the target class.273

We perform these groupings over straight line segments (prim-274

itives) extracted from the unlabeled sketch using the Douglas-275

Peucker algorithm [37] as illustrated in Figure 3. This is per-276

formed in the combination generation step shown in Fig. 2.277

Groupings created over primitives are more flexible compared278

to those created over strokes, and allow us to support multi-279

object strokes and multi-stroke objects as defined in [7].280

The complexity of this method depends on the number of281

sketches in the dataset, complexity of the fragmentation method282

(Douglas-Peucker algorithm in our case), and min-max val-283

ues of the number of primitives per combination to be gener-284

ated, which are set by the user. The worst case complexity of285

Douglas-Peucker algorithm is O(n2), where n is the number of286

sketch points per stroke. The complexity of generating combi-287

nations for is O(p × (l − s + 1)), where p is the average number288

of primitives produced by the Douglas-Peucker algorithm, l is289

the number of primitives in the longest combination, and s is290

the number of primitives in the shortest combination. As a re-291

sult, the complexity of this method is the combination of these292

steps, which is : O(D×K × (n2 + p× (l− s + 1))), where D is the293

number of sketches in the dataset, and K is the average number294

of strokes per sketch.295

Enumeration of primitives to obtain symbol candidates is296

costly, and has exponential time complexity in the number of297

primitives. To keep this step tractable, we limit the number of298

primitives in each group to 2-15, and assume the primitives to299

be temporally adjacent.300

Once all the symbol candidates are extracted, we compute301

IDM features [34] for them using the feature extraction settings302

recommended by Sezgin and Tumen [14] in the feature extrac-303

tion step in Fig. 2. IDM feature extraction method transforms304

sketches into five feature images. Four of those feature images305

contain orientation and one of those contains stroke endpoint306

information of a sketch. After extraction of the feature images,307

IDM applies smoothing and down-sampling followed by a con-308

catenation operation to form the feature vector. Next, a few309

(1-3) sketches are randomly selected and only the positive in-310

stances are labeled to mimic user input. Feature vectors repre-311

senting the symbol candidate are then passed to the conservative312

rejection step to discard those candidates that are unlikely to be313

instances of the symbol of interest.314

4.2. Conservative Rejection315

In a typical sketch, candidate extraction yields thousands of316

primitive groupings, only a few of which will be of the target317

symbol class. This creates scalability concerns for the subse-318

quent steps. Hence, we discard any candidates that we can con-319

fidently declare belonging to the negative class (i.e., class other320

than the symbol of interest).321

We filter out some of the negative instances by training a322

simple but fast classifier following a strategy inspired by the323

work of Viola et al. [38]. Instances that get classified into the324

negative class are filtered out of the data set. The filtered out325

instances are labeled negative in the final evaluation step. The326

proportion of the instances to be filtered out is determined by327

a free parameter. In our experiments, we set this parameter to328

25%, meaning the quarter of the instances that are predicted329

negative will be filtered out.330

A good value for this parameter depends on the dataset char-331

acteristics as this parameter controls the trade-off between the332

speed of the later processes and the false omission rate. In333

our dataset, negative instances dominate over the positives in334

numbers thus setting the parameter value to 25% has a positive335

impact on speed of the later processes while keeping the false336

omissions rate very low as presented in the results section.337

In our experiments, we train a classifier using a linear kernel338

SVM with labeled instances (assuming that unlabeled instances339

in annotated sketches belong to negative class) for conserva-340

tive rejection [39]. The linear kernel SVM is trained with a341

high C hyper-parameter value to prevent training errors as it is342

done in one-class-classification frameworks. Next, we predict343

the classes of unlabeled instances using this classifier. The in-344

stances that are predicted negative with highest confidences are345
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Figure 2: Component Diagram of the Framework
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Figure 3: Illustration of Sketch Fragmentation and Combination: a) Original
sketch with two symbols (4 and +) with arrows describing the drawing order. b)
Primitives (lines) extracted through fragmentation. c) Combinations containing
two primitives, d) Combinations containing three primitives

filtered out. We choose to use linear kernel for speed and its346

superior generalization ability for small data sets.347

4.3. Self-Learning348

Self-learning tries to expand the initial set of 1-3 positive349

examples with new ones selected from the candidates that pass350

the conservative rejection step. We perform self-learning us-351

ing our context-based self-learning method, and a host of other352

alternatives.353

In practice self-learning has usually been used with larger354

seed sets (larger than 10) [40]. This is primarily due to the diffi-355

culty of generalizing with few examples. Hence, in our experi-356

ments, we also include alternative methods capable of working357

with very few examples to serve as baselines. In particular, we358

include variants of nearest neighbor self learners combined with359

state of the art feature representations (i.e. Instance-wise Near-360

est Neighbor (IW NN) (section 5.1), Mean of Distanced Nearest361

Neighbor (MoD NN) (section 5.2)), and an approach based on362

artificial instance generation (AIG). The details of these self-363

learners are described in Section 5.364

To keep our experiments tractable, we cut off self-learning365

after a total of 15 instances have been labeled.366

4.4. Discriminative Learning367

In this stage, we train final binary classifiers using the self-368

labeled instances. For this purpose, we use nearest neighbor369

classifiers and linear SVMs with bagging. Bagging is a well370

known approach in machine learning literature to overcome over-371

fitting and high variance. This approach selects sub samples372

from the data set randomly with repetition, trains a model with373

each set, and predicts the class of an instance by combining the374

predictions of each individual models.375

While nearest neighbor classifier is a very simple classifier,376

it is extremely hard to beat in sparse data sets (fewer than 5 ex-377

amples) [41, 42]. Linear SVM with bagging is a meta-learning378

method [43]. Here, we generate 50 random subsets of the data379

set and train models for each of those subsets. The subsets are380

generated by randomly selecting half of the instances from the381

data set. For prediction, we perform majority voting.382

The classifiers obtained in this step are used to make the383

final predictions on all the unlabeled instances to measure clas-384

sifier performance.385

4.5. Performance Measurement386

We follow the standard confusion matrix approach in our387

study to measure system performance. However, since the gran-388

ularity of labeling is at the level of primitives, we adopt a fuzzy389

evaluation scheme that addresses issues that can arise from over-390

fragmentation.391

Over-fragmented sketch data sets include instances that are392

very similar to positive sketch objects yet labeled as negative in393

ground truth. An example is presented in 4. In this example,394

there are four instances each is a subset of the positive labeled395

sketch object. The instance that has 90% match is also a clear396

example of a circle, however as it is a subset of the annotated397

sketch object, it is not labeled as positive in the ground truth398

annotation. In order to address this issue, we calculate the con-399

fusion matrix using fuzzy evaluator.400

Fuzzy evaluator is a simple matching algorithm that labels401

a prediction as true positive if its overlap with the annotated402

sketch is over a certain threshold. We set this free parameter to403

90%. In cases where there are multiple positive predictions for404

the same object that exceed the threshold, only the one with the405

highest amount of overlap is counted as true positive and other406

predictions are counted as false positives.407

Although we report fuzzy evaluation results, we conducted408

additional experiments to compare predictions directly to the409

ground truth for the top methods (context based self-learning410

and nearest neighbor). Direct comparison experiments produced411

results very similar to fuzzy evaluation (less than 0.01% differ-412

ence in performance). The direct and fuzzy evaluations pro-413

duce very close results, because fuzzy evaluation only kicks in414

if an object has more than ten primitives. In our dataset, most415

objects have fewer than ten primitives, thus fuzzy evaluation416

performance closely follows direct comparison.417

The set of initially labeled examples affect the performance418

of the system. For example, while some sets may have diverse419

instances, others may consist of highly similar and redundant420

examples. In this case, we would expect the diverse set to421

perform better than the similar set as it carries more informa-422

tion about the class. In order to account for such variations in423

our evaluation, we performed each experiment with randomized424

sets of labeled sketches for a total of 10 repetitions.425

5. Self-Learners426

We propose two self-learners that combine state of the art427

feature representations with nearest neighbor classifiers. A third428
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Figure 4: Conceptual example of over-fragmentation.

self-learner is inspired by the work of Miller et at.[25], and is429

based on artificial instance generation. The fourth method is430

our novel context based self-learning method.431

5.1. Instance-wise Nearest Neighbor (IW NN)432

Here we extend the positive instance set by labeling the433

unlabeled instances closest to the existing positive labeled in-434

stances where the distance is defined as the Euclidean distance435

between feature vectors. Each positive instance contributes equal436

number of additional positive instances.437

5.2. Mean of Distances Nearest Neighbor (MoD NN)438

This method extends the positive instance set by labeling439

instances with the lowest mean distance to all of the positive la-440

beled instances where distance is defined as the Euclidean dis-441

tance between feature vectors. This method effectively favors442

points closest to the mean of the existing data points. It has the443

potential advantage of finding more diverse instances compared444

to the instance-wise nearest neighbor method.445

5.3. Artificial Instance Generation (AIG)446

Formally, artificial instance generation is not a self-learning447

method. While self-learning methods extend the labeled set448

via labeling unlabeled instances, artificial instance generation449

method extends the labeled set by generating novel instances450

from existing ones.451

We generate artificial instances by applying linear geomet-452

ric transformations on positive labeled instances. We limit the453

set of transformations to rotation and shearing. We generate454

10 novel instances for each positive labeled instance, randomly455

apply transformations using a rotation parameter in the range456

[−π/12, π/12], and a shearing parameter in the range [0, 0.25].457

This approach is inspired by the work of Miller et al.[25], which458

tries to generalize from a single example by combining it with459

a probability density defined over the parameters of a family of460

affine transforms.461

5.4. Context Based self-learning462

It is known that sketches contain rich spatial patterns. For463

example, elements in charts [44], nodes and connectors in a bi-464

nary trees [22], components in a circuit diagram have prototyp-465

ical spatial co-occurrence patterns [7, 13]. The context-based466

self-learning algorithm that we propose is based on this obser-467

vation.468

The key insight is to favor unlabeled symbol candidates that469

not only have the appearance of the class of interest, but also470

appear in contexts that are typically observed for objects of in-471

terest. Hence we calculate appearance and context scores for472

symbol candidates.473

5.4.1. Calculation of the appearance score474

The appearance score measures the visual similarity between475

an unlabeled instance and the positive labeled instance that is476

closest to it. The score is calculated based on the feature-space477

distance between the unlabeled and the labeled instances (i.e.478

Euclidean distance between the feature vectors of labeled and479

unlabeled instances). After calculations, we normalize the ap-480

pearance scores to the range [0, 1] using Platt scaling [45].481

5.4.2. Calculation of the context score482

The context score measures the agreement of the pairwise483

spatial relationships of candidate symbols and the already la-484

beled examples. It is computed in five steps: clustering, predic-485

tion, score calculation, score scaling, and instance selection.486

In the clustering step, we cluster sketches by their appear-487

ance into sufficiently large number of clusters (20 in our case) to488

achieve within cluster homogeneity using hierarchical cluster-489

ing. Sketch appearances are encoded using IDM features (i.e.490

each whole sketch is represented by a set of IDM features).491

During clustering, Euclidean distance in feature space is used492

as similarity metric. In the prediction step, object instances in493

unlabeled sketches are located via nearest neighbor classifiers494

using the annotated instances.495

To serve as a toy example, consider the set of unlabeled496

sketches in Fig. 5-a. The process starts by clustering all un-497

labeled sketches based on their appearance. This allows us to498

find sufficiently large clusters of sketches that are likely to share499

similar contexts (one such cluster shown in Fig. 5-b). Subse-500

quent operations focus on these clusters, hence we save compu-501

tational resources.502

Next we bootstrap the self-learning process by obtaining la-503

bels for objects in one of these sketches. These are the few504

examples that we require from a user. We use these examples505

as nearest neighbor classifiers to predict labels on the unlabeled506

instances (Fig. 5-c). Note that these classifiers don’t have to be507

very accurate. In particular, they can be allowed to have large508

false positive rates. An overwhelming portion of the false posi-509

tives will not have the expected contextual relationships, hence510

they will not inhibit the subsequent steps. Appearance scores511

of the positively predicted instances are calculated at this step,512

which is inversely proportional to the distance between the in-513

stance and its labeled nearest neighbor. As an example, triangle514

in second sketch at Fig. 5-d has a low appearance score as its515

appearance is less similar to the appearance of the labeled tri-516

angle.517

Next, matching scores are calculated by comparing the spa-518

tial relationships between pairs of predicted symbols in the la-519

beled and unlabeled sketches. Continuing with the example in520
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a.

b.

c.

d.

Figure 5: A toy example illustrating the calculation of the context score: a) The
unlabeled input sketches, b) A cluster consisting of five similar sketches ob-
tained through hierarchical agglomerative clustering (sketches 1, 3, 4, 5, 6), c)
Objects in one of the sketches are labeled (green sketch), and classes predicted
on the others indicated in color. Note the prediction error on the third sketch
from left. d) The appearance, context and final scores computed.

Fig. 5-c, this amounts to comparing the pairwise spatial rela-521

tionships between the triangle, square and circle in the labeled522

sketch to the spatial relationships of the same symbols predicted523

in the unlabeled sketches. In our examples, the triangle in the524

second sketch in Fig. 5-d to has a high context score as its spa-525

tial relationship to other objects is similar to what we observe526

in the labeled sketch. Spatial relationship is defined by the527

length and orientations of imaginary vectors originating from528

the source object and extending to the target object (for exam-529

ple, an imaginary vector in Fig. 5-c from the triangle to the530

square). The spatial relationship in this example would be cap-531

tured by the length and orientation of the imaginary vector. The532

context scores will be higher for pairs that match the spatial533

relationship in the labeled sketch (Fig. 5-d). Pseudo-code for534

calculation of context score for a single sketch object is pre-535

sented in algorithm 1. These scores are also normalized using536

Platt scaling. After scaling scores to the range [0, 1], all the537

scores are subtracted from 1 to represent similarity instead of538

dissimilarity.539

The complexity of calculating context score for a single ob-540

ject is O(o + G× ep), where o is the number of sketch objects in541

the sketch, G is the number of labeled sketches in the dataset,542

and ep is the size of patterns in the labeled sketches (propor-543

tional to number of sketch objects in the labeled sketches).544

After the context score S C and appearance score S A are cal-545

culated for all candidate sketch objects, the scores are combined546

to obtain a final score S f inal (Fig. 5-d). We combine scores us-547

ing a linear combination where an α parameter controls the rel-548

ative dominance of the context and appearance. In particular:549

S f inal = S C ∗ α + S A ∗ (1 − α). We select unlabeled instance550

candidates with the highest scores, and add them to our seed list551

of labeled examples, hence achieve self-learning. Examples of552

failure (false positive) and success (true positive) of this method553

are presented in Figure 6.554

This method is able to work with different sketches ranging555

from having a single, to tens of different sketch objects. For556

sketches that embodies only single sketch object, the context557

score will be calculated based on the location of the object in558

the sketch. In this case if a candidate sketch object is located559

in a different place compared to labeled object, it will have a560

lower context score. When there exist multiple objects in a561

sketch, the method will compare the placement patterns of the562

objects with the placement patterns in the labeled sketches. The563

context score yielded by comparing placement patterns formed564

with multiple objects will be more informative as the placement565

patterns with more objects supply more information. As a re-566

sult, the datasets with sketches that embodies multiple objects567

will benefit the context method better compared to the ones that568

embodies single objects. However this does not indicate that as569

the number of objects per sketch increases, the benefit gained570

from context method will increase.571

6. Results572

In the previous sections, we introduced a conservative re-573

jection scheme to improve scalability, bagging to address data574
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Algorithm 1 Context Score Calculation Algorithm
1: procedure Context Score Calculation(target object t, la-

beled s placement patterns G, sketch s)
2: Let placement pattern p for t within s be

PlacementPattern(t, s)
3: Let minscore be +Inf
4: for each placement pattern g in G do
5: if PatternDissimilarity(g, p) is less than minscore

then
6: minscore = PatternDissimilarity(g, p)
7: end if
8: end for
9: return minscore

10: end procedure
11: procedure PlacementPattern(target object t, sketch s)
12: Let h be the holder for placement information
13: for each object o in sketch s do
14: Let a be the angle between t and o
15: Let d be the distance of the object centers between

t and o in s
16: Let c be the predicted class of o
17: Add a, d, and c to h
18: end for
19: return h
20: end procedure
21: procedure PatternDissimilarity(pattern p, pattern g)
22: Let h be the holder for entry differences
23: for each entry ep in pattern p do
24: Let entry eg be the entry in g that is sharing same

object class with entry ep

25: Add angle and distance differences between eg and
ep to h

26:
27: end for
28: Let the average angle difference be aa

29: Let the average distance difference be ad

30: return aa + ad

31: end procedure

Figure 6: Failure and success examples for the context-based self-learner.

Figure 7: Performance of conservative rejection measured through the false
omission rate. (FOR = FN / (FN+TN))

imbalance, and four self-learning methods to learn from few575

examples. Here we report the performance of these techniques.576

6.1. Conservative Rejection Performance577

We used conservative rejection to remove irrelevant candi-578

date objects. However, since instances of the symbol of interest579

may already be too few, we would like the avoid discarding580

them. Hence, we need to assess the number of relevant exam-581

ples that have been inadvertently removed in this step. This is582

measured through the false omission rate.583

The false omission rate gives the number of positive candi-584

dates that have been inadvertently discarded, normalized by the585

number of true negatives. As seen in Fig. 7, even if we filter out586

a large portion of the instances, as we do in our case, the false587

omission rate is quite low.588

6.2. Effect of Bagging589

In order to assess the utility of bagging, we compare the per-590

formance of the self-learning methods that have bagging vari-591

ants. We performed a 3-factor repeated measures ANOVA to592

study the effects of three factors on self-learning: 1) the ini-593

tial number of positive instances (1, 2 or 3), 2) the presence or594

absence of bagging method (using bagging vs. using a single595

classifier), and 3) the self-learning method (MoD NN, IW NN,596

AIG). The profile plots in Fig. 8 clearly demonstrate the ad-597

vantage of performing bagging. Green-house-Geisser corrected598

values computed following the Mauchly’s test of sphericity did599

not indicate three-factor interactions (p < 0.05). The analysis600

indicated statistically significant interactions for the first and the601

third, as well as the second and third factors (p < 0.05). The602

presence of an interaction between factors implies that the set-603

ting of one parameter has an effect on the way changing the set-604

ting of the other parameter will affect the system performance.605

These interactions are quantitative interactions, hence we look606

at the main effects. The main effects show that all three fac-607

tors have a statistically significant effect on performance. Most608

importantly, bagging results in significant improvements in per-609

formance. This result serves as the first demonstration of the610

utility of bagging for sketch recognition with few examples in611

the literature.612
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Figure 8: Performance (F-measure) of bagging for the three methods with and
without bagging. For all three methods, bagging results in a statistically signif-
icant improvement in performance.

Figure 9: Precision for combinations of appearance and context scores shown
as a function of α

6.3. Self-Learning Performance613

We assess the performance of the self-learning methods in614

two fronts. First, we assess the precision of each method in find-615

ing new examples that are indeed of the desired symbol class.616

Next, we measure if the new examples are successfully con-617

verted into higher recognition accuracies.618

The precision of the context-based self learner depends on619

the α parameter. Since this parameter controls the mixture of620

context and appearance scores, we expect it to have a peak to-621

wards the middle. Figure 9 agrees with this expectation. A622

value of α = 0 favors appearance, and α = 1 favors context.623

However, note that since the context score is only calculated624

for sketches which already have symbols with plausible appear-625

ances, the precision does not drop too low on the far end of the626

graph as one might expect.627

We report the classification performance of the final clas-628

sifiers using F-measure. F-measure serves as a reliable metric629

for imbalanced data sets, hence its use is appropriate. Fig. 10630

presents the overall performance of all methods for varying631

number of initial examples.632

In order to assess statistical significance, we performed a633

multi-factor repeated-measures ANOVA test. We took the num-634

ber of positive instances (NoPI), and the self-learning method as635

the two factors. Since we have analyzed the effects of bagging636

separately, here we treat each of the 8 methods independently.637

The profile plots from our analysis Fig. 10 shows consistent638

ordering of the performances for the methods under question.639

A pronounced superiority of the context-based self-learning is640

also evident. The Greenhouse-Geisser corrected values com-641

puted following the Mauchly’s test of sphericity show statisti-642

cally significant interactions (Table 3, and Fig. 10). Hence, we643

tested for simple main effects of the self-learning methods for644

1, 2 and 3 initial positive instances. The results show that the645

context-based self-learner dominates over the other methods for646

all choices of the number of initial examples (p < 0.05). The647

95% confidence intervals are shown in Fig. 11.648

Note that since the profile plots from our analysis (Fig. 10)649

shows consistent ordering of quantitative interactions, consult-650

ing the main effect statistics is safe. The statistics indicate sig-651

nificant main effects (p < 0.05) for both factors under investiga-652

tion (NoPI & Method) shown in Table 3. Results of the pairwise653

comparisons for the number of positive instances and the 95%654
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Figure 10: Estimated marginal means of the performances measured through
F-Measure values. A multi-factor repeated measures ANOVA test shows that
our context-based self learner with linear SVM bagging performs significantly
better. In the legend, the label before the + symbol indicates the self-learning
method, the label after the + indicates the classifier that was used. See Table 3,
and Table 4 for the quantitative details.

Figure 11: 95% confidence intervals (error-bars) and estimated marginal means
(filled bars) for the methods. The context-based learner dominates over the
others.

confidence intervals can be found in Table 4. This main effect655

is also evident in Fig. 10.656

As can be seen from the results, our novel context based657

self-learning method with linear SVM bagging is superior com-658

pared to other methods. We attribute the superior performance659

of context based self-learning to its higher precision and diverse660

instance selection capability.661

7. Discussion662

The results presented above are surprising on many fronts.663

First, it is counter-intuitive to see that self-learning and artifi-664

cial instance generation do not always yield better performance665

compared to a simple instance-based classifier.1 This is the case666

for initial seed set sizes of 1, 2 and 3 for the instance-wise and667

mean-of-distance based nearest neighbor self-learners. Even668

though the precision of these methods improve with larger seed669

sizes (Fig. 10 shows steady improvement), the self-learned ex-670

amples actually lead to inferior classifiers.671

1See Fig. 10 where N.N. without self-learning achieves significantly better
results than mean of distance N.N., and methods that utilize AIG.

We believe this is due to lack of diversity of the newly added672

examples, and the adverse effects of mislabeled examples added673

to the seed set through self-learning. In order to verify the ef-674

fects of diversity, we compared the diversity of the examples675

added through our context-based self-learner, which is the over-676

all best achiever, and those added by the other self learners.677

We assess diversity of a set of candidates by computing the678

minimum radius that encloses the candidates and the labeled679

examples from which the candidates were self-learned. We use680

linear kernel support vector data description to find the hyper-681

sphere [46]. Intuitively, a set of diverse instances will require682

a larger sphere for enclosure, while the less diverse ones will683

fit inside a small one. Figure 12 displays the relative diversity684

of the instances chosen by two underperforming self-learners to685

the ones chosen by the context-based self learner. Hence the y686

axis serves as an indicator of the difference in diversity. Those687

instances with positive value can be said to be more diverse than688

their respective counterparts learned through the use of context.689

As seen in this figure, the relative diversity of the candidates690

selected for labeling is mostly on the negative side for the un-691

derperforming methods. This is strong evidence that underpins692

the importance of diversity, and serves as a guide for further693

research in the direction of building better self-learners.694

Another surprising result is the boost in performances ob-695

tained through combination of self-learning and bagging – first696

time such results are presented in the sketch recognition liter-697

ature. Bagging in general appears to help even with few posi-698

tively labeled examples. This has the potential to help with the699

data imbalance problems associated with large number of out-700

liers in realistic sketches. Extrapolating these results, we can701

predict that classifiers with bagging will be a standard choice in702

simultaneous segmentation and recognition architectures where703

the classifiers are fed few instances of positive instances and704

many more examples of outliers and meaningless sketch frag-705

ments.706

The problem that we are addressing is far more challenging707

than the traditional closed-set, many-examples setup adopted708

in the mainstream. Hence, comparing the accuracies directly709

is not appropriate. However, there is room for improvement.710

We see two future directions that can be taken to further im-711

prove classification accuracies. First, the labeling process can712

be organized more strategically. In our system, the sketch to713

be labeled by the user is selected randomly. There is evidence714

from the Active Learning literature that not all examples are715

equally useful, and directing the annotation effort to the more716

informative examples has the potential to yield better recog-717

nizers. Active learning gives a set of rules and guidelines on718

how these more informative examples can be found. We be-719

lieve active learning with an emphasis on using few examples720

is a promising future direction to take. Second, we utilize con-721

text placement information for self-learning. However, we be-722

lieve using context information for prediction can further boost723

system performance in general.724
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Source Type III SS df Mean Square F Sig. Partial Eta Sq.
NoPI 13,811 1,794 7,699 92,517 ,000 ,368

Error(NoPI) 23,736 285,234 ,083
Method 38,833 3,023 12,848 189,069 ,000 ,543

Error(Method) 32,657 480,586 ,68
NoPI * Method ,388 8,382 ,046 3,463 ,000 ,021

Error(NoPI*Method) 17,793 1332,743 ,013

Table 3: Tests of within-subjects effects.

95% Confidence Interval
(I) NoPI (J) NoPI Mean Difference (I-J) Std. Error Sig. Low. Bound Up. Bound

1 2 -0.089 0.012 000 -0.118 -0.061
3 -0.146 0.012 000 -0.174 -0.118

2 1 0.089 0.012 000 0.061 0.118
3 -0.056 0.009 000 -0.077 -0.035

3 1 0.146 0.012 000 0.118 0.174
2 0.056 0.009 000 0.035 0.077

Table 4: Pairwise comparisons for the effect of the number or positive instances (NoPI) used for initiating self-learning. All differences are statistically significant
(p < 0.05).

Figure 12: Smallest Hyper-Spheres Radius Differences of self-learning Meth-
ods

8. Contributions and Future Work725

We presented a novel context-based self learning method726

that successfully learns from few examples. We demonstrated727

the utility of this approach through its ability to accurately se-728

lect diverse examples for training sketch recognizers. Success-729

ful incorporation of bagging and conservative rejection serve as730

two additional contributions.731

We believe that our work is open for further improvements.732

All of the subsystems we presented can be further studied inde-733

pendently. Apart from the methods we examined in this work,734

there are many methods proposed in literature which can be735

used to achieve better results in our system. We see two ma-736

jor directions for future work in sketch recognition with few737

instances.738

One direction to study is active learning for sketch recog-739

nition with few instances. In our current system, the user an-740

notates sketches selected in random. However, it is possible to741

increase performance rates both for self-learning and classifi-742

cation if the sketches to be annotated are chosen carefully as743

opposed to randomly. The work of Yanik et al. [19] on active744

learning for sketch recognition can serve as a guideline for such745

future work.746

In this work, we utilize context information only for self-747

learning. However, context can be used to improve classifica-748

tion rates as well. There is already a body of work using con-749

text for recognition, and the insights gained from this work can750

lead to novel ways of using context, and adaptive models which751

know when and where to use context information.752
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