
Int. J. Human-Computer Studies 111 (2018) 78–91 

Contents lists available at ScienceDirect 

International Journal of Human-Computer Studies 

journal homepage: www.elsevier.com/locate/ijhcs 

Gaze-based predictive user interfaces: Visualizing user intentions in the 

presence of uncertainty 

Ça ğla Çığ Karaman 

∗ , Tevfik Metin Sezgin 

Intelligent User Interfaces Lab, Department of Computer Engineering, Koç University, Istanbul, 34450, Turkey 

a r t i c l e i n f o 

Keywords: 

Implicit interaction 
Activity prediction 
Task prediction 
Uncertainty visualization 
Gaze-based interfaces 
Predictive interfaces 
Proactive interfaces 
Gaze-contingent interfaces 
Usability study 

a b s t r a c t 

Human eyes exhibit different characteristic patterns during different virtual interaction tasks such as moving a 
window, scrolling a piece of text, or maximizing an image. Human-computer studies literature contains exam- 
ples of intelligent systems that can predict user ’s task-related intentions and goals based on eye gaze behavior. 
However, these systems are generally evaluated in terms of prediction accuracy, and on previously collected of- 
fline interaction data. Little attention has been paid to creating real-time interactive systems using eye gaze and 
evaluating them in online use. We have five main contributions that address this gap from a variety of aspects. 
First, we present the first line of work that uses real-time feedback generated by a gaze-based probabilistic task 
prediction model to build an adaptive real-time visualization system. Our system is able to dynamically provide 
adaptive interventions that are informed by real-time user behavior data. Second, we propose two novel adaptive 
visualization approaches that take into account the presence of uncertainty in the outputs of prediction models. 
Third, we offer a personalization method to suggest which approach will be more suitable for each user in terms 
of system performance (measured in terms of prediction accuracy). Personalization boosts system performance 
and provides users with the more optimal visualization approach (measured in terms of usability and perceived 
task load). Fourth, by means of a thorough usability study, we quantify the effects of the proposed visualization 
approaches and prediction errors on natural user behavior and the performance of the underlying prediction 
systems. Finally, this paper also demonstrates that our previously-published gaze-based task prediction system, 
which was assessed as successful in an offline test scenario, can also be successfully utilized in realistic online 
usage scenarios. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

For several years, great effort has been devoted to developing gaze-
ased prediction models that capture human behavior patterns natu-
ally accompanying virtual interaction tasks such as reading an elec-
ronic document, or manipulating a virtual object ( Fig. 1 ) ( Bader et al.,
009; Bednarik et al., 2012; Campbell and Maglio, 2001; Çığ and Sezgin,
015a; Courtemanche et al., 2011; Steichen et al., 2013 ). 

However, existing models are generally evaluated in terms of predic-
ion accuracy, and within offline scenarios that assume perfect knowl-
dge about user ’s task-related intentions and goals. Such scenarios are
alled wizard-based test scenarios. Note that, in this paper, “online us-
ge ” does not refer to real-life usage scenarios. Online/offline distinc-
ion is made not based on how realistic the user interface is but based
n whether the predictions are fed back to the user during interaction.
n an example offline wizard-based test scenario, the users are asked
o either select an object, or to manipulate a previously selected object
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 Bader et al., 2009 ). Collected data with labels corresponding to user
ntentions are then used to compute the accuracy of the related inten-
ion prediction model. The output of the prediction model is in no way
hown to the users. In other words, in the wizard-based test scenarios,
he loop between the user and the prediction system is open, i.e. the
ser is fed hardwired and perfect visual feedback via the user interface
rrespective of predictions made by the prediction system ( Fig. 2 a). Ex-
sting studies do not take into account how these models would perform
n the absence of wizards. They also do not examine how/if the predic-
ion errors affect the quality of interaction. In this paper, we eliminate
he wizard assumption and close the loop between the user and the pre-
iction system. We achieve this by feeding highly accurate but imperfect
redictions (since we do not have prediction systems that can perform
ith 100% accuracy yet) made by the prediction system to the user via
ppropriate visualizations of the user interface ( Fig. 2 b). By means of
 thorough usability study, we seek answers to the following research
uestions: (1) How should a user interface adapt its behavior accord-
017 
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Fig. 1. Screen capture of one of our predictive user interfaces visualizing a virtual interaction task. User ’s task is to drag the blue square (located on the upper-left of the screen) onto the 
center of the green circle (located on the bottom-right of the screen). We use our gaze-based virtual task prediction model to predict user ’s task-related intentions and goals in real-time. 
Furthermore, we assist the user by automatically triggering various user interface adaptations that reflect these predictions. By adaptation, we mean the adaptation of the screen contents 
in terms of the visibility of visual feedback corresponding to possible tasks. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 2. Closing the loop between the user and the prediction system. The user behavior 
affects system prediction which in turn may affect user behavior. 
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ng to real-time predictions made by the underlying prediction system?
2) Will adaptations affect user behavior and inhibit performance of the
rediction system (that assumes natural human behavior)? (3) Will pre-
iction errors affect user behavior and inhibit performance of the pre-
iction system? (4) Does users ’ compatibility with the prediction system
ave implications for the design of such interfaces? 

Section 2 gives a summary of related work on gaze-based predictive
nterfaces. Section 3 provides details on our usability study, proposed
daptive visualization approaches, and proposed gaze-based predictive
ser interfaces. Section 4 describes the evaluation of our predictive user
nterfaces in terms of performance, usability, and perceived task load.
 w  

79 
ection 5 concludes with a discussion of our work and a summary of
uture directions. 

. Related work 

Explicit interfaces (e.g. text terminals and graphical user interfaces)
ely on direct commands from the user to the computerized system. In
ontrast, implicit interfaces sense and reason about user actions that are
ot primarily aimed to interact with a computerized system to automat-
cally trigger appropriate reactions ( Schmidt, 2000 ). In order to reason
bout user actions with innovative sensors like eye trackers, implicit
nterfaces model human behavior by extracting useful and usable pat-
erns while users keep their normal habits and ways of interaction. The
dvantage of implicit interfaces is that the users do not need explicit
ommands, prior knowledge, or training to interact with the system.
hortcomings of the command-based explicit interaction model are es-
ecially highlighted in mobile computing systems where the ability to
nput commands is limited. In this paper, we show that well-designed
ntelligent user interfaces can assist the users by implicitly generating
ommands based on previously learned models of eye gaze behavior.
elated work falls under two broad categories: gaze-based virtual task
redictors and gaze-contingent user interfaces. 

.1. Gaze-based virtual task predictors 

To the best of our knowledge, there is no line of work that uses online
eedback from a gaze-based task prediction model to build a user inter-
ace that dynamically adapts itself to user ’s spontaneous task-related
ntentions and goals. The majority of the related work focuses solely on
enerating prediction models and evaluating them in terms of predic-
ion accuracy. However, these systems pay little attention to how pre-
iction models would perform in online usage scenarios. In this paper,
e address the multi-faceted goal of building a real-time user interface
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hat dynamically captures and predicts user ’s task-related intentions and
oals based on eye-movement data, and proactively adapts itself accord-
ng to these predictions. 

Among the earliest examples of gaze-based virtual task predictors is
ork by Campbell and Maglio (2001) . They use a wide range of eye
ovement patterns in order to classify reading, skimming, and scan-
ing tasks. This was followed to a great extent by studies concentrating
n intention prediction, i.e. predicting whether the user wants to in-
eract with the system or not during natural interaction. For instance,
ader et al. (2009) use a probabilistic model to predict whether the user

ntends to select a virtual object or not with 80.7% average accuracy.
imilarly, Bednarik et al. (2012) use SVMs to predict whether the user
ntends to issue a command or not with 76% average accuracy. Both
rediction tasks are examples of binary classification. To the best of
ur knowledge, none of these works have carried out formal studies to
valuate the proposed prediction models in online usage scenarios that
nvolve real users interacting with predictive user interfaces driven by
hese models. 

There are only a few studies that take intention prediction one step
urther and attempt multi-class intention prediction of virtual tasks. The
rst notable example is by Courtemanche et al. (2011) . This work uti-

izes eye movements discretized in terms of interface-specific areas of
nterest (AOI) in addition to keystroke and mouse click events created
y the user during interaction. They use HMMs to predict which of the
hree Google Analytics tasks (i.e. evaluating trends in a certain week,
valuating new visits, and evaluating overall traffic) the user is cur-
ently performing with 51.3% average accuracy. The second example
s by Steichen et al. (2013) . Their domain is information visualization
ith graphs including bar graphs and radar graphs. Similarly, they rely
n interface- and graph-specific AOIs for feature extraction, and Logistic
egression to predict which of the five information visualization tasks
retrieve value, filter, compute derived value, find extremum, and sort)
he user is currently performing with 63.32% average accuracy. In sub-
equent studies, the same group of authors propose different user inter-
ace adaptations for graphs (e.g. highlighting, drawing reference lines,
nd recommending alternative visualizations) ( Carenini et al., 2014 ),
nd study the effects of these adaptations on a user ’s performance, both
n general and in relation to different visualization tasks and individ-
al user differences ( Conati et al., 2014 ). However, as the authors also
ention in a recent publication ( Steichen et al., 2014 ), they have still
ot published a fully integrated adaptive information visualization sys-
em that is able to dynamically provide adaptive interventions that are
nformed by real-time user behavior data. 

.2. Gaze-contingent user interfaces 

A closely-related research area focuses on gaze-contingent user inter-

aces ( Duchowski et al., 2004 ). Gaze-contingent user interfaces utilize
aze data for adapting the user interface contents as we do. However,
hey rely simply on the instantaneous location of a user ’s focus of at-
ention. Besides, they do not contribute probabilistic prediction systems
r sophisticated gaze-based feature extraction mechanisms to the liter-
ture. Nevertheless, for completeness sake, our literature review covers
orks in this area as well. 

Although very few publications address the issue of building gaze-
ased predictive user interfaces, gaze-contingent user interfaces have
ttracted much attention from research teams in the last decade. Gaze-
ontingent user interfaces alter the on-screen view presented to the user
ased on the focus of a user ’s visual attention. These interfaces are uti-
ized for improving usability in information visualization applications
nd promoting engagement and learning in e-tutoring applications, etc.
espite manifesting the large potential benefits of gaze-contingent user

nterfaces in numerous application areas, all existing works have the
ollowing shortcomings in common: (1) They are rule-based, i.e. they
ie specific actions to specific regions on the screen and trigger the user
nterface for an adaptation only based on the duration of eye gaze on
80 
hese specific regions. (2) In these systems, there is no probabilistic pre-
iction algorithm that directs the adaptive behavior of the user interface.
ccordingly, there is no effort to tackle challenges associated with un-
ertainty or prediction errors. (3) There is no systematic analysis inves-
igating whether and how these user interface adaptations affect user ’s
atural gaze behavior. (4) Lastly, there are very few formal studies to
ssess the usability and perceived task load associated with these user
nterfaces. 

One of the first examples of gaze-contingent user interfaces is pro-
osed by Starker and Bolt (1990) . Their system uses dwell time to deter-
ine which part of a graphical interface a user is interested in, and then
rovides more information about this area via visual zooming and syn-
hesized speech. Streit et al. (2009) and Okoe et al. (2014) have notable
ontributions that use gaze data for adapting the contents of informa-
ion visualization systems. Streit et al. (2009) use gaze data to enlarge
isualization or maximize clarity of focused regions in 2D scenes, and
o navigate 3D scenes. Okoe et al. (2014) use gaze data to improve a
ser ’s speed and accuracy in determining whether two nodes are con-
ected in a graph by dimming out or highlighting edges according to
ser ’s view focus, and manipulating saliency of sub-graphs around nodes
iewed often. Several publications have appeared in recent years doc-
menting the use of gaze-contingent user interfaces in intelligent tu-
oring systems. Sibert et al. (2000) use dwell time to detect difficulties
n identifying words during reading tasks and assist users by provid-
ng visual (via highlighting) and auditory cues. Wang et al. (2006) and
 ’Mello et al. (2012) use gaze data to alleviate disengagement during

earning by providing visual and auditory feedback to “unattentive ” stu-
ents looking away from the screen. 

To the best of our knowledge, among the existing works that aim to
uild gaze-contingent user interfaces, there is no work that addresses the
roblem of adapting the user interface contents in line with user ’s task-
elated intentions and goals inferred via probabilistic models of user
ehavior. 

. Usability study 

Consider the tasks described in Fig. 3 . We have a gaze-based virtual
ask prediction system that can accurately distinguish between these
asks. In this paper, we propose to use online feedback from this system
o build a user interface that dynamically adapts itself to user ’s sponta-
eous task-related intentions and goals. This gives rise to the following
esearch questions: (1) How should a user interface adapt its behavior
ccording to real-time predictions made by the underlying prediction
ystem? (2) Will adaptations affect user behavior and inhibit perfor-
ance of the prediction system (that assumes natural human behavior)?

3) Will prediction errors affect user behavior and inhibit performance
f the prediction system? (4) Does users ’ compatibility with the predic-
ion system have implications for the design of such interfaces? 

.1. Demographics 

We conducted our usability study on 19 participants (17 males, 2 fe-
ales) recruited from undergraduate and graduate students of our uni-

ersity ’s engineering faculty on a voluntary basis. Our participants were
ged 20–26 years old (M = 23.3, SD = 2.0). 10 participants had normal
ision, while the remaining 9 had corrected-to-normal vision. 15 par-
icipants had dark-colored eyes, while the remaining 4 had fair-colored
yes. On a scale between 1 (none) to 5 (application developer), partic-
pants were moderately experienced with tablets (M = 3.7, SD = 0.9),
nd less so with pen-based tablets (M = 2.4, SD = 1.2) and eye trackers
M = 2.5, SD = 0.8). 

.2. Setup 

We used a Tobii X120 stand-alone eye tracker and a tablet to collect
ynchronized gaze and pen data, respectively. Tobii X120 operates with
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Fig. 3. Pen-based virtual interaction tasks included in our research. Demonstrative examples of how each task can be performed are visualized with dotted visualizations. Starting and 
ending positions of the exemplary pointer motion is visualized with dotted circles whereas direction of the exemplary pointer motion is visualized with a dotted arrow connecting the 
starting and ending positions. It is important to note that the dotted visualizations only serve as a reference within this paper, and they are not meant to be visible to the user during the 
usability study. 
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 data rate of 120 Hz, tracking accuracy of 0.5°, and drift of less than
.3°. The tracker allows free head movement inside a virtual box with
imensions 30 ×22 ×30 cm. For displaying our user interfaces accompa-
ied by user ’s pen position on the tablet, we used a 18.5 ′′ Samsung wide
creen LED monitor connected to a PC with Intel Core i5-2500 3.30 GHz
PU and 8GB RAM. Our interfaces were implemented in C ++ using the
isual Studio 2013 IDE. Detailed description of the physical setup can
e found in our previous paper ( Çığ and Sezgin, 2015a ). 

.3. User interfaces 

To answer the research questions posed above, we designed and im-
lemented 5 different user interfaces that collectively serve as a gener-
lized, context-free, and non-application-specific test bed. The first two
re wizard-based interfaces and will be respectively referred to as wiz-

rd UI , and after-the-fact wizard UI . Wizard-based interfaces assume that
here exists a “wizard ” which knows and informs the underlying pre-
iction system about the user ’s intentions, thereby allowing the system
o provide the user with correct visual feedback at any moment dur-
ng interaction. The remaining three are realistic predictive interfaces
hat eliminate the wizard assumption and will be respectively referred
o as after-the-fact predictive UI, real-time predictive UI , and subtle real-time

redictive UI . Our predictive interfaces demonstrate alternative ways of
isualizing real-time predictions, and hence each produce an answer to
he first question. To answer the second and third questions, we compare
he predictive interfaces with the wizard-based interfaces with respect to
ystem performance (measured in terms of prediction accuracy), usabil-
ty, and perceived task load. To answer the fourth question, we search
81 
or a correlation between users ’ compatibility with the prediction system
nd measured performance on different predictive interfaces. 

.3.1. Wizard UI 

Wizard UI can be thought of as the “gold standard ” among our inter-
aces. It is designed to resemble as closely as possible the WIMP-based
ser interfaces that users are familiar with. Accordingly, in this wizard
nterface, the underlying prediction system has no command over the
nterface and prediction results are not visualized by means of any inter-
ace adaptations. Expectedly, the user is unaware of predictions errors.
n other words, the loop between the user and the prediction system is
pen, i.e. the user is fed hardwired and perfect visual feedback via the
ser interface irrespective of predictions made by the prediction sys-
em ( Fig. 4 ). We use the system performance, usability, and perceived
ask load of this wizard interface as the upper bound and evaluate our
roposed predictive interfaces in comparison with this interface. Under-
ying prediction systems have been trained with multimodal user data
reviously collected via a nearly identical user interface (that also does
ot visualize predictions). Therefore, system performance of this inter-
ace is expected to surpass others. Usability and perceived task load of
his interface is similarly expected to surpass others since it is deliber-
tely designed to resemble traditional WIMP-based user interfaces. 

.3.2. After-the-fact wizard UI 

We have a prediction system that can accurately distinguish between
ntended user actions (i.e. with approximately 90% success rate for 5 ac-
ions). Users can greatly benefit from a user interface that reflects user ’s
ask-related intentions and goals in real-time. For this purpose, the loop
etween the user and the prediction system must be closed, i.e. highly
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Fig. 4. Screen captures of wizard UI during a drag task. Images serve as illustrations of how our interface looks at the onset, during, and at the end of the user ’s pen action, respectively. 
Position of the manipulated object changes in accordance with the user ’s pen action. Note that the user is fed visual feedback about the current task, and that task only. 

Fig. 5. We introduce a novel visualization paradigm for gaze-based predictive user inter- 
faces where effects of all possible actions are visualized simultaneously for the duration of 
an action. This paradigm that we will refer to as simultaneous visualization can be utilized 
for providing visual feedback to users in the presence of uncertainty. 

a  

b  

l  

t  

t  

e  

o  

w  

t  

u
 

t  

p  

o  

i  

r  

e  

b  

s  

o  

f  

Fig. 6. Screen captures of after-the-fact wizard UI during a drag task. Effects of all possible act
action is finalized, a prediction is made about the user ’s intended action. Accordingly, irrelevant
6 d ). However, there is no prediction really since the intended action information is provided by

82 
ccurate but imperfect predictions made by the prediction system must
e fed to the user via appropriate visualizations of the user interface. In
ine with the feedback principle of design ( Norman, 1988 ), the user in-
erface must provide immediate and appropriate visual feedback about
he effects of user ’s actions from the start to the end of an action. How-
ver, the prediction system can say its final word on the user ’s action
nly once the action is completed. The challenge here is to find a novel
ay of providing real-time feedback about user ’s action-related inten-

ions and goals throughout an action while the user ’s intention is still
ncertain. In other words, the challenge is uncertainty visualization. 

After-the-fact wizard UI is our first step towards tackling the uncer-
ainty visualization challenge. We propose a novel user interface ap-
roach where effects of all possible actions are visualized simultane-
usly for the duration of an action ( Fig. 5 ). When the action is finalized,
rrelevant effects fade out and only the effects of the intended action
emain visible ( Fig. 6 ). We expect that the user ’s eyes will focus on the
ffects of the intended action and irrelevant effects will not affect user
ehavior thereby inhibit performance of the prediction system (that as-
umes natural human behavior). This user interface will serve as a means
f testing this argument. Note that this interface is also a wizard inter-
ace, i.e. once the action is completed, the intended action information
ions are visualized simultaneously from the onset until the end of the action. When the 
 effects fade out and only the effects of the intended action (i.e. drag ) remain visible ( Fig. 
 the wizard. 
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Fig. 7. Screen captures of after-the-fact predictive UI during a drag task. Screen captures in Fig. 6 also apply to this interface with only one difference. In this case, the intended action 
information is provided by the underlying prediction system. Hence, when the action is finalized, the user may see effects of an unrelated action due to possible prediction errors. For 
example, Fig. 7 b shows what the UI looks like if user ’s intended action is incorrectly predicted as a maximize task instead of a drag task. 
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Fig. 8. We introduce another novel visualization paradigm that we will refer to as adap- 

tive transparency . It can similarly be utilized for uncertainty visualization in gaze-based 
predictive user interfaces. In this paradigm, the user interface dynamically adapts itself 
according to user ’s real-time intentions and goals. In this respect, our novel visualization 
paradigm is similar to as-you-type suggestions (i.e. incremental search or real-time sug- 
gestions) used in popular search engines or predictive keyboard applications for mobile 
devices. 
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s provided by the wizard instead of some underlying prediction system.
ccordingly, this user interface is also free from prediction errors. 

.3.3. After-the-fact predictive UI 

After-the-fact predictive UI can be regarded as a realistic version of
fter-the-fact wizard UI , where the wizard assumption is eliminated and
he intended action information is provided by the underlying prediction
ystem instead of the wizard. Accordingly, when the user completes an
ction, s/he may see effects of an unrelated action if the underlying sys-
em produces a prediction error ( Fig. 7 ). This interface that we propose
or visualizing prediction results can be employed in an online usage
cenario, hence system performance, usability, and perceived task load
f this interface is of great interest to our usability study. 

.3.4. Real-time predictive UI 

Showing the effects of irrelevant actions for the entire duration of
n action can lead to a heavily cluttered interface as the number of
ossible actions increases. We offer to use transparency as a solution.
ore specifically, we envision a user interface where increasing levels

f transparency indicates decreasing likelihoods of an action being the
ntended action. When an action starts, it becomes possible to produce
rogressively more accurate prediction results in real-time from the start
o the end of an action. Since our prediction system is of probabilistic
ature, it is also possible to acquire the likelihoods of an action being
he intended action in real-time. On that account, we propose another
ovel user interface approach where effects of all possible actions are
isualized simultaneously for the duration of an action with dynamically
hanging levels of transparency ( Fig. 8 ). This allows us to create a less
luttered and more responsive real-time predictive interface that does
ot wait until the end of an action to make a prediction. 

Every 500 ms, the underlying prediction system feeds the user in-
erface with a list of probability values each denoting the likelihood of
n action being the intended action. This, in turn triggers the scene to
e redrawn according to the updated likelihood values ( Fig. 9 ). We em-
loy the following steps to create a mapping from the likelihood value p
o the alpha value 𝛼 to determine the transparency level of each effect.
ikelihood values range from 0 to 1 and alpha values range from 0 to
55 (0 indicating full transparency and 255 indicating full opacity). If
e directly map the likelihood values to alpha values, the effect of an
ction might fully disappear as its likelihood value approaches too close
o 0. To make sure that effects of all actions are visible at all times, we
ncrement the likelihood value of each effect by a base likelihood value
f 0.25. Note that for all actions the initial value of p ∗ is set to 0.25.
hen we map the likelihood values to acquire alpha values in the range
64 255] using the following formulas: 

 

∗ = 0 . 75 ∗ 𝑝 + 0 . 25 (1)

= ⌈𝑝 ∗ ∗ 255 ⌉ (2) 
83 
Note that a similar methodology applies to the previously described
fter-the-fact predictive UI where the alpha value is fixed at 255, i.e. all
ffects are fully opaque at all times. 

.3.5. Subtle real-time predictive UI 

Subtle real-time predictive UI can be regarded as a more subtle version
f real-time predictive UI , where the base likelihood value is twice as
arge, and hence the range of alpha values starts at a higher level. In this
ase, the likelihood values are mapped in a similar fashion to acquire
lpha values in the range [128 255] using the following formulas: 

 

∗ = 0 . 50 ∗ 𝑝 + 0 . 50 (3)

= ⌈𝑝 ∗ ∗ 255 ⌉ (4) 

Note that similarly, for all actions the initial value of p ∗ is set to 0.50.
his increase in the base likelihood value results in decreased fluctuation
f transparency levels, and hence a more stable interface ( Fig. 10 ). 

.4. Procedure 

Each participant was subjected to each of the five user interface con-
itions, resulting in a repeated measures design. The order of conditions
resented to each participant was randomized based on the Latin square
ethod (using a 5 × 5 Latin square). During each condition, participants
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Fig. 9. Screen captures of real-time predictive UI during a drag task. Effects of all possible actions are visualized simultaneously from the onset until the end of the action. These effects 
have dynamically changing levels of transparency indicating the likelihood of each action being the intended action at any instant during interaction. It is possible for effects of unlikely 
actions to disappear as in Fig. 9 c based on the instantaneous prediction results. Visibility fluctuation may be found plausible by some users and distracting by others, further analysis in 
Section 4 will seek an answer to this question among others. 
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1 Note that the instructions for the drag, maximize, and minimize tasks contain color 
information which will not show in a B/W copy of Fig. 3 . For these tasks, the object to be 
manipulated (dragged/maximized/minimized) is the one on the left side of each screen. 
ere instructed to complete 5 randomized repeats of 5 tasks ( Fig. 3 ). The
rder of tasks presented during each condition was randomized as well.
t took each participant about 30 min to complete the study. By means
f our usability study, we compiled a database of eye gaze, pen, and
redicted task label data from 19 participants for 5 randomized repeats
f 5 tasks in 5 different user interface conditions. In-between the condi-
ions, participants received 5 practice runs corresponding to each of the
 tasks in the upcoming user interface condition. 

Overall, our usability study consisted of 4 main stages. In the first

tage , participants were presented with the study guidelines. During
his stage, we informed the participants in advance about the various
isual effects they might face while performing the tasks (such as visual
eedback corresponding to unrelated tasks, or changes in transparency).
ore specifically, we asked them to concentrate on the given tasks em-

hasizing the fact that these effects did not determine or affect their
uccess by any means. In addition to this, we requested the participants
o keep their eyes on the display device, use a single stroke to com-
84 
lete each task, and maintain an appropriate distance to the eye tracker
which could be monitored and adjusted via the status bar that stayed
reen as long as the participant was inside the gaze tracking range).
n the second stage , participants were asked to complete the standard
uilt-in 9-point calibration procedure posed as an “attention test ” in or-
er to conceal any hints of eye tracking. Third stage was the main data
ollection stage. Participants received the tasks one by one. At the be-
inning of each task, prerecorded non-distracting (in terms of avoiding
nsolicited gaze behavior) audio instructions were delivered via head-
hones. Transcripts of the audio instructions given to the participants
or each task are listed as follows 1 : 

• Connect: Connect the centers of the two squares 
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Fig. 10. Screen captures of subtle real-time predictive UI during a drag task. Similarly, effects of all possible actions are visualized simultaneously with dynamically changing levels of 
transparency. When compared with the previous interface, effects of all actions are more pronounced at all times and it is not possible for effects of unlikely actions to disappear due to 
the increase in the base likelihood value. 

 

 

 

 

i  

p  

m  

1  

t  

i  

f  

t  

r  

t  

d  

a  

t  

a  

u  

w  

i  

s  

c  

m  

g  

d  

i  

b  

n  

U  

(  

h  

w  

q  

t  

t  

A
 

s

 

 

 

n  

e
 

a

 

 

 

3

 

l  
• Drag: Drag the blue square onto the center of the green circle 
• Maximize: Increase the size of the blue square to match the size of

the green square 
• Minimize: Decrease the size of the blue square to match the size of

the green square 
• Scroll: Pull the chain until the color of the last link is clearly visible

For each task, participants were asked to manipulate the object
n a certain way. The objects could be manipulated by holding and
ulling/pushing them in the desired direction using the pen. Desired pen
otion started at the center of the object and followed a diagonal line of
0.5 cm. However, the participants were free to manipulate the object as
hey see fit and decide when the task was complete. We believe this flex-
bility in task completion criteria is necessary to elicit natural behavior
rom participants. In order to manipulate the object, participants used
he pen-based tablet and the display. A hand-shaped visual cursor was
endered on the display to indicate the position of the user ’s pen on the
ablet. If anything went wrong during a task (e.g. the percentage of gaze
ata flagged valid by the eye tracker was less than 80% or the participant
ccidentally made redundant/irrelevant pen movements), the current
ask was repeated. In the fourth and final stage of our usability study,
 questionnaire was administered to collect qualitative data about the
sability and perceived task load associated with our user interfaces as
ell as demographic data. For the questionnaires, we gathered our user

nterfaces into three groups: first group consisted solely of wizard UI ,
econd group consisted of the after-the-fact interfaces, and third group
onsisted of the real-time interfaces. Therefore, users were asked to sub-
it three answers instead of five to each of the questionnaire items. This

rouping approach is necessary since users cannot differentiate between
ifferent flavors of after-the-fact and real-time interfaces without know-
ng further details about our usability study, perhaps the most important
eing the presence of underlying prediction systems. For the question-
aire, we compiled a series of Likert-type questions based on the System
sability Scale (SUS) ( Brooke, 1996 ) and the NASA Task Load Index
85 
NASA-TLX) ( Hart and Staveland, 1988 ) assessment tools. SUS gives a
igh-level subjective view of usability while NASA-TLX rates perceived
orkload. Both tools allow the researchers to add scores of individual
uestions to yield a single score on a scale of 0–100. Since some ques-
ions (e.g. “How much physical activity was required? ”) are irrelevant
o our usability study, we have excluded them from our questionnaire.
s a result, we included the following list of questions in our study: 

SUS questions to assess usability (with items on a 5-point likert

cale) 

• I thought the system was easy to use. 
• I found the system unnecessarily complex. 
• I would imagine that most people would learn to use this system

very quickly. 
• I thought there was too much inconsistency in this system. 
• I felt very confident using the system. 
• I needed to learn a lot of things before I could get going with this

system. 

(Note that positively- and negatively-worded questions were alter-
ated so that the participants have to read each statement and make an
ffort to think whether they agree or disagree with it.) 

TLX-NASA questions to assess perceived performance, effort,

nd frustration (with items on a 20-point likert scale) 

• How successful were you in accomplishing what you were asked to
do? 

• How hard did you have to work to accomplish your level of perfor-
mance? 

• How insecure, discouraged, irritated, stressed, and annoyed were
you? 

.5. Underlying gaze-based task prediction systems 

In the previous sub-sections, we have repeatedly referred to under-

ying prediction systems that provide intended action information to our
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Fig. 11. Characteristic signals obtained from sketch-gaze distance signals of each task. 
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ser interfaces. These systems are in fact statistical prediction models
rained with machine learning algorithms on previously collected user
ata. In total, we have two major task prediction systems: an after-the-
act prediction system, and a real-time prediction system. The former is
ntegrated into our after-the-fact predictive UI whereas the latter is inte-
rated into our real-time predictive UI and subtle real-time predictive UI . In
his sub-section, we describe these systems in detail. 

.5.1. After-the-fact task prediction system 

Our after-the-fact prediction system builds upon our previously-
ublished work on gaze-based prediction of pen-based virtual interac-
ion tasks ( Çığ and Sezgin, 2015a ). In our previous paper, we present
n after-the-fact task prediction system for the same set of tasks that we
nclude in the current paper. In the current paper, we modify the exist-
ng system to the needs of a responsive real-time user interface. More
pecifically, we decrease the average time it takes for the existing sys-
em to determine the type of a newly completed action from 1.125 s to
.039 s. 

Our after-the-fact prediction system waits until the ongoing action
s completed to provide intended action information. It outputs a sin-
le value denoting the predicted action from the list of possible actions.
ore specifically, it outputs a single value from the set {1, 2, 3, 4, 5}

ince we have five tasks in total. To determine the type of a newly com-
leted action, this system extracts three kinds of features from the col-
ected gaze and pen (sketch) data. These features are: (1) evolution of
nstantaneous sketch-gaze distance over time, (2) spatial distribution of
aze points collected throughout a task, and (3) IDM visual sketch fea-
ures ( Ouyang and Davis, 2009 ). Detailed description of each feature
an be found in our previous paper ( Çığ and Sezgin, 2015a ). 

We focus on optimizing the computational time of the first feature
ince we have previously demonstrated that it is this feature (more
pecifically the Dynamic Time Warping (DTW) library it utilizes) that
auses the performance bottleneck ( Çığ and Sezgin, 2015b ). The first
eature models the time-wise evolution of the instantaneous distance
etween pen tip and gaze direction over time using a time-series sig-
al. Initially, one or multiple characteristic signals are computed per
ask ( Fig. 11 ). When it comes to determining which task a new signal
elongs to, similarity of the new signal to each of the characteristic sig-
als is measured. For computing the similarity of two given signals, an
pen-source MATLAB-based DTW is used ( Felty, 2004 ). To reduce the
ime requirement of this similarity computation, we have replaced the
ATLAB-based library with another library that is written and compiled
86 
n the more efficient C programming language ( DeBarr, 2006 ). Numeri-
ally, this allows us to process a single action in 0.039 s instead of 1.125,
n improvement by a factor of approximately 30 times. 

Using the optimized version of our feature extraction mechanism, we
rain our after-the-fact prediction system following the standard three-
tep machine learning pipeline. The first step involves extracting fea-
ure vectors from a set of data samples. To this end, we extract the fea-
ures described earlier to obtain three separate feature vectors for each
ompleted action in the database. The first two feature vectors are com-
ined via feature-level fusion and the third feature vector is merged with
his combination via classifier-level fusion, both decisions taken based
n our previous findings on how information fusion technique effects
ccuracy values in our context ( Çığ and Sezgin, 2015a ). Note that for
xtracting the feature vectors, we use the same set of data samples col-
ected in our previous study ( Çığ and Sezgin, 2015a ). The second step of
he pipeline involves training prediction models using the extracted fea-
ure vectors. For this purpose, we train a single Support Vector Machine
SVM) model using the Gaussian radial basis function (RBF) kernel. In
his step, we do not partition the input data into disjoint folds for train-
ng and testing, and instead use the whole data for training our model
ince we will use real-time user data during the usability study for test-
ng purposes, which in fact constitutes the third and final step of the
ipeline. 

.5.2. Real-time task prediction system 

Our real-time prediction system provides on-the-fly intended action
nformation from the start to the end of action. It outputs a list of prob-
bility values each denoting the likelihood of an action being the in-
ended action. More specifically, it outputs five likelihood values each
n the range [0 1] since we have five tasks in total. 

Training of our real-time prediction system is similar to the training
f our after-the-fact prediction system except for one major difference.
e use our real-time prediction system to create responsive interfaces

hat dynamically adapt themselves according to user ’s real-time inten-
ions and goals, and do not wait until the end of an action to make a
rediction. This requires a specialized training approach as we have pre-
iously proposed in Çığ and Sezgin (2015b ). In line with this approach,
e train five separate SVM models capturing the characteristics of each

ask during different time intervals. Accordingly, the first model cap-
ures the characteristics of each task in the first 500 ms while the second
odel captures the characteristics of each task in the first x milliseconds
here x is between 500 and 1000, etc. Our real-time prediction system
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Fig. 12. Mean computation times obtained with each DTW library as a function of time 
elapsed from the start of a task. Note that with the MATLAB-based DTW library, it is 
not even possible to update the user interface every 500 ms according to user ’s real-time 
intentions and goals since after a point, it takes more than 500 ms for the prediction system 

to determine the likelihood values for the ongoing action. 
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Fig. 13. Marginal mean accuracy score for each user interface averaged over all users. 
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n fact consists of these five separate SVM models. Every 500 ms, our
eal-time prediction system uses the appropriate SVM model to compute
nd feed the user interface with a list of probability values each denot-
ng the likelihood of an action being the intended action. This, in turn
riggers the scene to be redrawn according to the updated likelihood
alues. 

Similar to the after-the-fact prediction system, the real-time predic-
ion system uses SVM models trained using the Gaussian radial basis
unction (RBF) kernel, and uses the whole data for training the models
nstead of partitioning the input data into disjoint folds for training and
esting. Moreover, our real-time prediction system uses the same kinds
f features for feature extraction, and combines separate feature vec-
ors using the same information fusion techniques. Computational time
s ever more important since our real-time prediction system is specif-
cally trained to enable responsive interaction. Therefore, for the first
ind of feature, the same optimized DTW library is used ( Fig. 12 ). 

. Evaluation 

We have proposed five different user interfaces. The first two are
izard-based interfaces. The first interface is the “gold standard ” due

o its deliberate resemblance to the WIMP-based user interfaces that
sers are accustomed to. More specifically, in this wizard interface, the
nderlying prediction system has no command over the interface and
rediction results are not visualized by means of any interface adapta-
ions. Expectedly, the user is unaware of predictions errors. Despite their
dvantages, wizard-based interfaces are not suited to realistic usage sce-
arios since they assume perfect knowledge about user ’s action-related
ntentions and goals. The reality, however, dictates uncertainty about
ser ’s intentions and goals unless we have prediction systems that can
erform with 100% accuracy. The remaining three interfaces are pre-
ictive interfaces. They have each been designed with the goal of build-
ng an adaptive user interface that visualizes user ’s intentions and goals
n the presence of uncertainty. In this section, we evaluate the predic-
87 
ive interfaces relative to the wizard interfaces, taking the performance
measured in terms of prediction accuracy), usability, and perceived task
oad of the first wizard interface as the upper bound. Hence, we both
ormally test our underlying prediction systems in reasonable scenarios
hat eliminate the wizard assumption, and propose multiple solutions to
he uncertainty visualization challenge faced while designing predictive
ser interfaces. 

We present our evaluation results under four main titles. In
ection 4.1 , we compare our interfaces quantitatively and qualitatively
ithout taking subjective differences into consideration, i.e. by inspect-

ng significant differences between mean scores of each user interface
veraged over all users. Then in Section 4.2 , we demonstrate that sub-
ective differences are too prominent and significant to be overlooked in
he context of our usability study. Therefore in Section 4.3 , we perform
uantitative and qualitative analysis using a repeated measures design.
aking the subject-based analysis one step further, we offer a statistical
ethod to predict which predictive user interface will be more suit-

ble for each user in terms of system performance. This personalized
pproach boosts system performance and provides users with the more
ptimal interface. 

.1. Subject-independent results 

.1.1. Quantitative (accuracy) 

We have intended and predicted task label data collected from 19 par-
icipants for 5 randomized repeats of 5 tasks in 5 different user interface
onditions. For each user interface, we compute the marginal mean of
ccuracy by taking the percentage of correctly predicted tasks over all
75 tasks ( Fig. 13 ). Wizard UI has the highest accuracy among the oth-
rs. As we have previously mentioned, superior performance of wizard

I is expected due to the fact that the underlying prediction systems
ave been trained with multimodal user data previously collected via a
early identical user interface (that also does not visualize predictions).
ore specifically, neither wizard UI nor our previously-published user

nterface involve simultaneous effect visualizations, adaptive changes
n transparency, and erroneous predictions. Despite the similarity of
hese interfaces, accuracy of wizard UI is 73% whereas accuracy of
ur previously-published interface was reported as 88% ( Çığ and Sez-
in, 2015a ). We believe this difference is caused by the fact that wizard

I was tested on a different group of participants than the one which
rovided the multimodal data for training and testing our previously-
ublished interface. This performance degradation can conceivably be
voided by training the underlying prediction systems using only the
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Fig. 14. Marginal mean qualitative results for each user interface measured in terms of usability and perceived task load, and averaged over all users. 
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Fig. 15. Mean accuracy score for each user averaged over all user interfaces. Note that a 
boxplot analysis of the corresponding data marks the two users with the lowest accuracy 
scores as mild outliers. However, we have not eliminated their data from future analysis 
since they are not marked as extreme outliers, and similar users are likely to use our 
interfaces. 
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urrent user ’s data or data collected from users who exhibit similar
and-eye coordination behaviors to the current user ’s. 

Following wizard UI, subtle real-time predictive UI has the second high-
st accuracy, surpassing even after-the-fact wizard UI that is free of pre-
iction errors. This indicates that subtle real-time predictive UI is the best
andidate for solving the uncertainty visualization challenge while min-
mizing accuracy degradation. 

.1.2. Qualitative (usability and perceived task load) 

Overall, usability of the real-time interfaces was rated higher than
sability of the after-the-fact interfaces. More specifically, users found
he real-time predictive interfaces easier to use, quicker to learn, and
hey felt more confident using them. In addition, users found the real-
ime predictive interfaces simpler, more consistent, and they needed less
rior information before using them. Likewise, perceived task load of
he real-time interfaces was rated lower than the after-the-fact inter-
aces, i.e. users perceived themselves as more successful in completing
he tasks while spending less effort and feeling less frustrated with the
eal-time predictive interfaces compared to the after-the-fact interfaces.

These results (also summarized in Fig. 14 ) demonstrate that de-
pite the complex mechanisms involved, usability and perceived task
oad of the real-time predictive interfaces (grouped under adaptive
ransparency) was rated superior to that of the after-the-fact interfaces
grouped under simultaneous visualization). This indicates that it is ben-
ficial to decrease the clutter and increase the responsiveness of the in-
erfaces by dynamically changing levels of transparency. 

.2. A personalized approach to uncertainty visualization 

Performance of a user during interaction with a novel predictive user
nterface is conceivably linked to the user ’s compatibility with the inter-
ace. We use the term compatibility to refer to how well the interface
ollects, reasons about, and visualizes the user ’s intentions and goals.
ighly compatible users which receive relatively more accurate feedback
bout their intentions and goals are more likely to perform better with
88 
nd have a high opinion about a novel predictive user interface. In ad-
ition to our main research questions, we also aim to find answers to
hese reasonable claims on personalized differences in compatibility with
ur predictive user interfaces. 

Detailed inspection of the accuracy scores reveals high levels of vari-
bility among users. Variability is primarily due to subjective differences
n compatibility with our gaze-based task prediction systems ( Fig. 15 ).
he majority of users produce information-rich hand-eye coordination
ehaviors that enable our gaze-based task prediction systems to achieve
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Fig. 16. Users with high accuracy values in wizard UI also have favorable accuracy values 
in subtle real-time predictive UI . 
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2 Positively-worded questions are concerned with ease of use, learnability, and con- 
fidence whereas negatively-worded questions are concerned with complexity, inconsis- 
tency, and need for prior information. Note that the tools we use for usability and per- 
ceived task load assessment ( Brooke, 1996; Hart and Staveland, 1988 ) allow the re- 
searchers to add scores of individual questions to yield a single score. 
igh accuracy scores irrespective of user interface type. On the other
and, a number of users do not lend themselves well to our gaze-based
ask prediction systems. Variability is also secondarily due to subjective
ifferences in user interface inclinations/preferences. For instance, we
bserve that some users are not as affected by prediction errors, oth-
rs perform better in real-time predictive interfaces compared to after-
he-fact predictive interfaces, etc. There is no single common pattern
mong users summarizing the relationship between user interface type
nd mean accuracy score. Based on these observations, we take vari-
bility among users into consideration when comparing the accuracies
f different user interfaces in the following sub-sections. To this end,
e adopt a repeated measures design that provides a way of accounting

or variability, thus decreasing non-systematic variance and increasing
ensitivity and power of comparisons between different user interfaces.
urthermore, we utilize variability to our advantage by proposing a per-
onalized approach to uncertainty visualization instead of a unified one.
his personalized approach fundamentally involves offering each par-
icular user with the user interface that s/he performs better with and
refers more. 

.3. Repeated measures design 

.3.1. Quantitative (accuracy) 

Our research primarily seeks answers to the questions of whether
ser interface adaptations or prediction errors affect user behavior
hereby inhibit performance of the underlying prediction systems (that
ssume natural human behavior). To find answers to these questions, we
onducted a repeated measures ANOVA that compares the effect of user
nterface type on mean accuracy scores. Mauchly ’s Test of Sphericity in-
icated that the assumption of sphericity had not been violated ( 𝜒2 (9) =
1 . 918 , 𝑝 = 0 . 220) , and therefore no corrections were used. There was
 significant effect of user interface type on mean accuracy scores,
 𝐹 (4 , 72) = 3 . 287 , 𝑝 = 0 . 016) . Post-hoc tests using the Bonferroni correc-
ion revealed that user interface adaptations elicited a slight degradation
n accuracy scores for after-the-fact predictive UI (65.68 ± 1.99) and sub-

le real-time predictive UI (67.16 ± 3.05) conditions compared to wizard

I condition (73.05 ± 2.44). However, neither reduction was found sta-
istically significant ( 𝑝 = 0 . 15 and 𝑝 = 0 . 43 , respectively), indicating the
uitability of these two predictive interfaces for solving the uncertainty
hallenge. The reduction was minimal in subtle real-time predictive UI

ondition, further emphasizing the superiority of this user interface. On
he other hand, real-time predictive UI condition (64.63 ± 2.58) elicited a
ignificant degradation ( 𝑝 = 0 . 043 ) in accuracy scores compared to wiz-

rd UI condition, ruling out the candidacy of this interface for solving
he uncertainty challenge. Furthermore, there was no significant effect
f absence/presence of prediction errors on accuracy scores ( 𝑝 = 1 . 00)
cross after-the-fact wizard UI (66.11 ± 2.73) and after-the-fact predictive

I conditions (two conditions that differ only in the absence/presence of
n underlying prediction system, and hence of prediction errors). On the
asis of these findings, we can conclude that after-the-fact predictive UI

nd subtle real-time predictive UI can be used for uncertainty visualiza-
ion in gaze-based predictive interfaces without significantly affecting
ser behavior and inhibiting performance of the underlying prediction
ystems. 

.3.2. Qualitative (usability and perceived task load) 

We have demonstrated in Section 4.1.2 that when subjective differ-
nces are not taken into consideration, usability and perceived task load
f the real-time interfaces are rated superior to usability and perceived
ask load of the after-the-fact interfaces. In this sub-section, we show
hat repeating the qualitative analysis using a repeated measures de-
ign, and hence taking subjective differences into consideration leads us
o the same conclusion. To make a concise statement, instead of analyz-
ng responses to individual questions on usability, we compute a single
core summarizing all aspects of usability by subtracting the sum of re-
89 
ponses to negatively-worded questions from the sum of responses to
ositively-worded questions. 2 

We conducted a repeated measures ANOVA to compare the ef-
ect of visualization paradigm on usability. Mauchly ’s Test of Spheric-
ty indicated that the assumption of sphericity had not been vio-
ated ( 𝜒2 (2) = 2 . 830 , 𝑝 = 0 . 243) , and therefore no corrections were used.
here was a significant effect of visualization paradigm on usability,
 𝐹 (2 , 36) = 6 . 545 , 𝑝 = 0 . 004) . Post-hoc tests using the Bonferroni correc-
ion revealed that usability of simultaneous visualization paradigm condi-
ion (4.16 ± 4.10) is statistically lower than usability of both “gold stan-
ard ” (8.32 ± 2.81) and adaptive transparency paradigm (6.84 ± 3.69)
onditions ( 𝑝 = 0 . 016 and 𝑝 = 0 . 027 , respectively). On the other hand,
o significant difference was found between usability of “gold standard ”
nd adaptive transparency paradigm conditions ( 𝑝 = 0 . 746 ). We also con-
ucted a repeated measures ANOVA to compare the effect of visualiza-
ion paradigm on perceived task performance, however no significant
ffects were found. 

.3.3. Correlation analysis and detection of user groups based on 

uantitative evidence 

Following the quantitative and qualitative comparative analysis of
ur user interfaces in a repeated measures design, we created a map-
ing based on correlation analysis to predict a user ’s compatibility with
ur gaze-based task prediction systems based on his/her performance
n wizard UI. Compatible users are assigned to subtle real-time predictive

I whereas incompatible users are assigned to after-the-fact predictive UI .
his personalized mapping and subsequent user interface assignment
pproach enables us to offer each particular user with the user inter-
ace that s/he performs better with and prefers more. In this manner,
e achieve a mean accuracy score that surpasses the individual mean
ccuracy scores of both user interface types. 

We ran a Pearson product-moment correlation to determine the re-
ationship between a user ’s mean accuracy score in wizard UI and differ-
nce between his/her mean accuracy scores in subtle real-time predictive

I and after-the-fact predictive UI . There was a statistically significant
ositive correlation ( 𝑟 = 0 . 485 , 𝑛 = 19 , 𝑝 = 0 . 035) . The corresponding
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Fig. 17. Personalization boosts system performance. Note that among our participants, 11 were predicted as compatible users and the remaining 8 were predicted as incompatible users. 
Error bars indicate ± 1 standard error. 
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inear regression equation ( Fig. 16 ) was estimated as follows: 

ifference = −32 . 373 + 0 . 463 × Accuracy in Wizard UI (5)

Using this equation and a given user ’s mean accuracy value in wizard

I , we can predict whether the user will perform better in subtle real-time

redictive UI or after-the-fact predictive UI . Since the correlation is posi-
ive, users with high accuracy values in wizard UI also have favorable
ccuracy values in subtle real-time predictive UI . We refer to users with
igh accuracy values in wizard UI (Difference ≥ 0) compatible users and
ffer them subtle real-time predictive UI . On the other hand, we refer to
sers with relatively lower accuracy values in wizard UI (Difference < 0)

ncompatible users and offer them after-the-fact predictive UI . This person-
lized approach yields mean accuracy scores of 72.36% and 63.5% for
ompatible and incompatible users, respectively ( Fig. 17 ). Averaged over
ll users, mean accuracy score raises up to 68.63%, surpassing the indi-
idual mean accuracy scores of all our predictive user interfaces. Note
hat the reported mean accuracy scores correspond to the leave-one-out
ross-validation accuracy scores. 

.3.4. Qualitative reasoning and statistical analysis behind user groups 

We have created an intelligent system that can predict which user
nterface a particular user will perform better with based on his/her
ompatibility with our wizard UI . More specifically, we offer subtle real-

ime predictive UI to compatible users and after-the-fact predictive UI to
ncompatible users . In this sub-section, we show that in addition to boost-
ng system performance, personalization provides users with the more
ptimal visualization approach (measured in terms of usability and per-
eived task load). 

Overall, compatible users did not prefer the after-the-fact interfaces as
uch as incompatible users. They found these interfaces less easy to use

3.18 vs. 4.00), more complex (3.45 vs. 2.75), and they felt less confident
sing them (3.36 vs. 4.00). Moreover, they perceived themselves as less
uccessful in completing the tasks (15.00 vs. 16.38) while spending more
ffort (9.82 vs. 6.75) and feeling more frustrated with these interfaces
7.27 vs. 5.25). We further ran a Pearson product-moment correlation
o determine the relationship between a user ’s rating of usability 3 for
3 To make a concise statement, instead of analyzing responses to individual questions on 
sability, we compute a single score summarizing all aspects of usability by subtracting the 
um of responses to negatively-worded questions from the sum of responses to positively- 
orded questions. 
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c  

90 
he real-time predictive interfaces only and difference between his/her
ean accuracy scores in subtle real-time predictive UI and after-the-fact

redictive UI . Note that the latter factor determines the user group of a
articular user. There was a statistically significant positive correlation
 𝑟 = 0 . 576 , 𝑛 = 19 , 𝑝 = 0 . 01) . This further emphasizes the inclination of
ompatible users towards the real-time interfaces. 

. Future work and concluding remarks 

We have presented the first line of work that uses online feedback
rom a gaze-based task prediction model to build a user interface that
ynamically adapts itself to user ’s spontaneous task-related intentions
nd goals. Since it is not yet possible to train prediction models that
an perform with 100% accuracy, we have proposed novel approaches
o providing visual feedback in the presence of uncertainty. From an-
ther point of view, we have closed the loop between the user and the
rediction system by feeding highly accurate but imperfect predictions
ade by the prediction system to the user via appropriate visualiza-

ions of the user interface. Our novel approaches for visualizing un-
ertainty, namely simultaneous visualization and adaptive transparency ,
ave been realized via wizard-based user interfaces and different fla-
ors of predictive user interfaces. To assess the performance, usability,
nd perceived task load of our interfaces, we have conducted a thor-
ugh usability study with 19 participants and 5 frequently employed
irtual interaction tasks. Among these interfaces, after-the-fact predic-

ive UI and subtle real-time predictive UI stand out as the best candidates
or solving the uncertainty visualization challenge. Both interfaces are
ble to visualize user ’s task-related intentions and goals in the pres-
nce of uncertainty, and without significantly affecting user behavior
nd inhibiting performance of the underlying prediction systems. More-
ver, the latter has comparable usability and perceived task load to
IMP-based user interfaces. Furthermore, we have offered a method

o predict which predictive user interface will be more suitable for
ach user in terms of system performance. Personalization boosts sys-
em performance and provides users with the more optimal visualization
pproach. 

Building complex real-world user interfaces utilizing our predic-
ion models and exploring their usability characteristics is an essen-
ial follow-up to what we presented. We believe that various exist-
ng software tools can possibly be improved if we have a way of
orrectly guessing the user ’s intentions during interaction. Practical
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pplication scenarios may involve professional diagramming software,
lectronic circuit design software, digital photography organizing tools,
nd mind mapping tools. In all these scenarios, the interface consists of
bjects (i.e. flowchart shapes, circuit elements, photos, rectangles rep-
esenting concepts, etc.) that need to be manipulated (i.e. dragged, re-
ized, connected, etc.) multiple times. In the existing interfaces, the user
as to explicitly switch the mode of operation via unnatural and im-
osed mode switching mechanisms and interaction rules. Well-known
xamples to such mechanisms are locating the four-headed arrow to
rag an object and locating the double-headed arrow that can only
e found at the corners and edges to resize an object. We believe we
an use our prediction system to create interfaces where the user does
ot have to make a specific gesture or locate the correct button to re-
eatedly switch the interaction mode in-between different manipula-
ion tasks. These novel predictive interfaces will especially profit mobile
evices where screen size limitations and absence of a physical mouse
ake high precision pointing impossible (also known as the fat finger
roblem). 

Until we can build prediction models that can perform with 100% ac-
uracy, we need to find a way to handle prediction errors. Although we
ave demonstrated that there is no significant effect of absence/presence
f prediction errors on accuracy scores in our context, it is possible that
sers might confuse system errors with user-induced errors and diverge
rom natural gaze behavior in an effort to avoid them. In turn, this di-
ergence will conceivably reduce the quality of the user ’s experience
ith the interface as well as the accuracy of our prediction systems

hat assume natural user behavior. In consequence, several questions
emain to be addressed with respect to detecting and recovering from
rediction errors: What will be the degree of initiative on the system ’s
ides – “will the system act, offer to act, ask if it should act, or merely
ndicate that it can act? ” ( Ju et al., 2008 ) How can we detect predic-
ion errors? Will it be possible for users to correct prediction errors by
verriding? How can we design transitions between implicit and ex-
licit interaction, so that users can interrupt or stop a proactive sys-
em action? How can we establish shared understanding between the
ser and the system without interrupting the interaction flow? For-
al user studies will be needed to obtain definitive answers to such

uestions. 
On the basis of the promising findings presented in this paper, work

n the remaining issues is continuing, and will be presented in future
apers. One remaining issue concerns mismatch between training and
esting conditions of our gaze-based task prediction models. The mis-
atch is firstly due to the fact that our models were evaluated using a
ifferent group of participants than the one which provided the mul-
imodal data for training them. In our future research we intend to
oncentrate on training the underlying prediction models using only
he current user ’s data or data collected from users who exhibit similar
and-eye coordination behaviors to the current user ’s. The mismatch is
econdly due to the fact that our models were trained with offline inter-
ction data that do not involve user interface adaptations or prediction
rrors. Nevertheless, our models were tested in an online setting. There-
ore, further research is required to investigate the performance of new
rediction models trained using multimodal data collected during the
sability study presented in this paper. Finally, note that we have ac-
uired quite promising results despite the presence of mismatches, and
e believe that alleviating the mismatch problem will further boost the
erformance of our prediction systems. Another issue concerns compat-

bility prediction. We predict a user ’s compatibility with our gaze-based
ask prediction systems based on his/her performance in wizard UI. Wiz-

rd UI is designed to resemble as closely as possible the WIMP-based user
nterfaces that users are familiar with. Further study into predicting a
ser ’s compatibility based on his/her natural gaze behaviors during inter-
ction with prominent browsers/operating systems (e.g. while the user
s freely browsing the web or organizing digital photo albums) would
e of interest. 
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