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Audio-Facial Laughter Detection
in Naturalistic Dyadic Conversations

Bekir Berker Turker, Yucel Yemez, Metin Sezgin, Engin Erzin

Abstract—We address the problem of continuous laughter detection over audio-facial input streams obtained from naturalistic dyadic
conversations. We first present meticulous annotation of laughters, cross-talks and environmental noise in an audio-facial database
with explicit 3D facial mocap data. Using this annotated database, we rigorously investigate the utility of facial information, head
movement and audio features for laughter detection. We identify a set of discriminative features using mutual information-based
criteria, and show how they can be used with classifiers based on support vector machines (SVMs) and time delay neural networks
(TDNNs). Informed by the analysis of the individual modalities, we propose a multimodal fusion setup for laughter detection using
different classifier-feature combinations. We also effectively incorporate bagging into our classification pipeline to address the class
imbalance problem caused by the scarcity of positive laughter instances. Our results indicate that a combination of TDNNs and SVMs
lead to superior detection performance, and bagging effectively addresses data imbalance. Our experiments show that our multimodal
approach supported by bagging compares favorably to the state of the art in presence of detrimental factors such as cross-talk,
environmental noise, and data imbalance.

Index Terms—Laughter detection, naturalistic dyadic conversations, facial mocap, data imbalance.
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1 INTRODUCTION

LAUGHTER serves as an expressive social signal in hu-
man communication, and conveys distinctive informa-

tion on affective state of conversational partners. As affec-
tive computing is becoming an integral aspect of human-
computer interaction (HCI) systems, automatic laughter
detection is one of the key tasks towards the design of
more natural and human-centered interfaces with better
user engagement [1].

Laughter is primarily a nonverbal vocalization accom-
panied with body and facial movements [2]. The majority
of the existing automatic laughter detection methods in the
literature have focused on audio-only information [3], [4].
This is mainly because audio is relatively easier to capture
and analyze compared to other modalities of laughter, and
often alone sufficient for humans to identify laughter. Yet vi-
sual cues due to accompanying body and facial motion also
help humans to detect laughter, especially in the presence
of cross-talk, environmental noise and multiple speakers.
While there is some recent trend in the community for
automatic laughter detection from full body movements [5],
[6], there are so far few works that exploit facial motion
[3]. The main bottleneck here, especially for incorporation of
facial data, is the lack of multimodal databases from which
facial laughter motion can reliably be extracted. The existing
works that incorporate facial motion mostly make use of
audiovisual recordings. Hence they rely on facial feature
points extracted automatically from video data, which are
in fact difficult to reliably track in the case of sudden and
abrupt facial movements such as in laughter. As a result,
the common practice is to use the resulting displacements
of facial feature points (in the form of FAPS parameters
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for instance) as they are, without further analysis. In this
respect the primary goal of this paper is to investigate facial
and head movements for their use in laughter detection
over a multimodal database that comprises facial 3D motion
capture data along with audio.

We address several challenges involved in automatic
detection of laughter. First, we present detailed annotation
of laughter segments over an audio-facial database compris-
ing explicit 3D facial mocap data. Our annotation includes
cross-talks and environmental noise as well. Second, using
this annotated database, we investigate different ways of
incorporating facial information along with head movement
to boost laughter detection performance. In particular, we
focus on discriminative analysis of facial features contribut-
ing to laughter and perform feature selection based on
mutual information. Another issue that we consider is the
relative scarcity of laughter instances in real world conversa-
tions, which hinders the machine learning task due to highly
imbalanced training data. To address this problem, we in-
corporate bagging into our classification pipeline to better
model non-laughter audio and motion. Finally, we analyze
the performance of the proposed multimodal fusion setup
that uses selected combinations of audio-facial features and
classifiers for continuous detection of laughter in presence
of cross-talks and environmental noise.

2 RELATED WORK

The work presented here falls under the general field of
affective computing. However laughter detection is very
different from affect recognition [7] that has been receiving
the main thrust in the community. As indicated by various
active strands of work, laughter detection is an entirely
separate field of interest driven by several research groups
[3], [8], [9], [10], [11], [12]. Laughter falls under the category
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of ’affect bursts’ which denote specific identifiable events [13].
This is unlike the general work in affect recognition which
attempts to continuously assess the emotional state of the
person of interest.

The work on laughter detection can be categorized into
two major lines: unimodal and multimodal approaches.
Unimodal approaches have mainly explored the audio
modality. For example, Truong et-al. have focused on laugh-
ter detection in speech [8], and Laskowski et-al. explored
laughter detection in the context of meetings [9]. Other
unimodal work focused on body movements [5], [6]. Griffin
et-al. [6] studied how laughter is perceived by humans
through avatar-based perceptual studies, and also explored
automatic recognition of laughter from body movements.
In another work, Griffin et-al. [14] presented recognition
(not detection) results on pre-segmented laughter instances
falling into five different categories. In contrast, here we take
a multimodal approach and perform detection. We use the
term ”detection” to refer to the task of segmentation and
classification over a continuous data stream, and the term
”recognition” for the task of classification on pre-segmented
samples.

In another work, Niewiadomski et-al. [5] identified sets
of useful features for discriminating laughter and non-
laughter segments. They used discriminative and gener-
ative models for recognition, and showed that automatic
recognition through body movement information compares
favorably to a human performance.

To distinguish pre-segmented non-verbal vocalizations
using audio only features, solutions employing different
learning methods have been proposed. Schuller et al. [15]
used a variety of classifiers on dynamic and static represen-
tations to differentiate non-verbal vocalizations (laughter,
breathing, hesitation, and consent). Among various classi-
fiers they used, hidden Markov models (HMMs) outper-
formed other classifiers such as hidden conditional random
fields (HCRFs) and support vector machines (SVM). Unlike
what we present, this work is unimodal in nature. Our
work complements these lines of work by shedding more
light into how audio and motion information contribute to
laughter recognition as individual modalities.

There are also other lines of work that have indirectly
studied laughter detection on the course of addressing
other problems. For example, since laughter is treated as
noise in speech recognition, its detection, segmentation,
and suppression have received attention [16]. Here laughter
detection is our primary concern, and we treat it with rigor.

Our work is more closely related to the multimodal
laughter detection and recognition systems [3], [10], [11],
[17], [18], [19]. Escalera et-al. combined audio information
with smile-laughter events detected at the frame level and
identified regions of laughter [17]. Petridis et-al. proposed
methods for discrimination between pre-segmented laugh-
ter and speech using both audio and video streams [3],
[18]. Extracted features are, facial expressions and head pose
from video, and cepstral and prosodic features from audio.
They have also showed that the decision-level fusion of
the modalities outperformed audio only and video only
classifications using decision rules as simple as the SUM
rule. Recently Petridis et al. [11] have proposed a method
for laughter detection using time delay neural networks

(TDNN). They have explained their relatively lower val-
ues for precision, recall and F1 score by the presence of
imbalanced data, where a typical stream would have way
more non-laughter frames than laughter ones. Our work
further supports the findings of these studies, and also gives
clear advantage through the use of bagging for dealing with
imbalanced databases.

In other multimodal work, Cosker and Edge [20] present
analysis of correlation between voice and facial marker
points using HMMs in four non-speech articulations,
namely laughing, crying, sneezing and yawning. Although
their work is geared towards synthesis of facial movements
using sound, it provides useful insights into laughter recog-
nition as well. A recent study done by Krumhuber and
Scherer [21] shows that the facial action units, coded using
Facial Action Coding System (FACS), exhibit significant
variations for different affect bursts and hence can serve as
cues in detecting and recognizing laughters.

Scherer et-al. [22] proposed a multimodal laughter de-
tection system based on Support Vector Machines, Echo
State Networks and Hidden Markov Models. Although they
use body and head movement information, the information
is extracted from video. Similarly, Reuderink et-al. [10]
perform audiovisual laughter recognition on a modified
and re-annotated version of the AMI Meeting Corpus [23].
They report performance measures over data containing 60
randomly selected laughter and 120 non-laughter segments.
They use 20 points tracked on the face to capture the
movements in the video. Both of these approaches use video
sequences for motion and facial feature point extraction in
contrast with the use of mocap data in our work.

In another recent work, Turker et al. proposed a method
for recognition between pre-segmented types of affect
bursts, namely, laughter and breathing using HMMs [24].
Although this method is promising, it could not directly
be used for continuous detection of laughters over input
streams.

The data we use in our evaluation is a broadened version
of the IEMOCAP database extended through a painstaking
annotation effort, and serves as one of our main contri-
butions. Although there are databases of unimodal and
multimodal audiovisual laughter data [25], [26], [27], [28],
our database stands out by the fact that it comprises explicit
facial mocap data and has been annotated for cross-talk and
environmental noise. Hence we were able to train models
with training data selected based on their clean, noisy
and/or cross-talk labels.

2.1 Contributions
In view of the related work discussed previously, the contri-
butions of this paper can be summarized as follows:

• We provide detailed annotation of laughter segments
over an existing audio-facial database that comprises
3D facial mocap data and audio, considering cross-
talks and environmental noise.

• We perform a discriminative analysis on facial fea-
tures via feature selection based on mutual infor-
mation so as to determine facial movements that
are most relevant to laughter over the annotated
database.
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• We construct a multimodal laughter detection sys-
tem that compares favorably to the state of the art,
especially the facial laughter detection performs out-
standing among the best performing methods in the
literature.

• We analyze the performance for continuous detec-
tion of laughters and demonstrate the advantage of
incorporating facial and head features, especially to
handle cross-talks and environmental noise.

3 DATABASE

In our analysis and experimental evaluations, we have used
the interactive emotional dyadic motion capture database
(IEMOCAP), which is designed to study expressive human
interactions [29]. The IEMOCAP is an audio-facial database,
which provides motion capture data of face, head and
partially hands as well as speech. The corpus has five
sessions with ten professional actors taking part in dyadic
interactions. Each session comprises spontaneous conver-
sations under eight hypothetical scenarios as well as three
scripted plays in order to elicit rich emotional reactions. The
recordings of each session are split into clips, where the total
number of clips is 150 with a total duration of approximately
8 hours.

The focus of the IEMOCAP database is to capture
emotionally expressive conversations. The database is not
specifically intended to collect laughters, and hence the
laughter occurrences in the database are not pre-planned
in any of the recorded interactions whether spontaneous
or scripted; they are generated by the actors based on the
emotional content and flow of the conversation. Instead
of reading directly from a text, the actors rehearse their
roles in advance (in the case of scripted plays) or impro-
vise emotional conversations (in the case of spontaneous
interactions). The database in this sense falls under the
category of “semi-natural” according to the taxonomy given
in [30]. The genuineness of acted emotions is an open issue
in most of the existing “semi-natural” databases as also
mentioned in this paper. Yet several works exist in the
literature, which are addressing this issue and suggesting
possible strategies to increase genuineness of acted emotions
[30], [31], [32]. In this sense, IEMOCAP can be viewed as
an effort to capture naturalistic multimodal emotional data
through dyadic conversations performed by professional
actors under carefully designed scenarios. We note that there
exists yet no emotional database which includes accurate
facial measurements in the case of fully natural laughters.

In the IEMOCAP database, a VICON motion capture
system is used to track 53 face markers, 2 head markers, and
6 hand markers of the actors at 120 frames per second. The
placement of the facial markers is consistent with the feature
points defined in the MPEG-4 standard. In each session,
only one actor has markers. We call the actor with markers
as speaker and the other actor as listener. Speakers’ data
will be in the main focus of this study, as they include both
audio and facial marker information. However, listeners
have also impact on the audio channel by creating cross-
talk effect on speakers’ laughters. The authors of [29] note
that the markers attached to speakers during motion data
acquisition are very small so as not to interfere with natural

speech. According to [29], the subjects also confirmed that
they were comfortable with the markers, which did not
prevent them from speaking naturally.

Throughout the paper, the motion capture data of the fa-
cial and head markers will be referred to as motion features.
The proposed laughter detection will be using audio and
motion features in a multimodal framework.

3.1 Laughter Annotation
Although the text transcriptions were available with the
IEMOCAP, the laughter annotations were missing. We have
performed a careful and detailed laughter annotation task
over the full extent of the database. The annotation effort
has been carried out with one annotator. Laughter segments
are identified with a clear presence of audiovisual laughter
events. The laughter annotations have been performed only
for the speaker over each clip in the database. In addition,
the speech activity of the listener has also been annotated
around the laughter segments of the speaker, which can
be defined as cross-talk for the laughter event. Similarly,
the acoustic noise appears as a disturbance to laughter
events. We define noise as any distinguishable environmen-
tal noise in audio caused by some external factors such as
footsteps of recording crew, creaking chairs of participants
(that especially happens when laughing due to abrupt body
movements). We have annotated the presence of environ-
mental noise in speakers’ and listeners’ recordings around
the laughter segments of speakers. Note that our annotation
does not include the noise which is due to data acquisition.
The speech activity and noise presence annotations allow us
to label the laughter conditions of a speaker as clean, noisy
and/or cross-talk. A sample annotation stream is shown in
Figure 1.

6/29 12/28

Laughter (speaker)

6/29 12/28

Speech (listener)

6/29 12/28

Noise

27.7.2016 - 3.8.2016

Clean

27.7.2016 - 3.8.2016

CleanCrosstalk

27.7.2016 - 3.8.2016

Noisy

Fig. 1. Sample annotation fragment with speaker laughter, listener
speech and noise.

TABLE 1
Laughter annotation statistics

Clean Noisy Cross-talk All
Number of occurrences 231 44 194 248
Total duration (sec) 213.92 17.49 165.25 382.00
Average duration (sec) 0.93 0.40 0.85 1.54

All five sessions of the IEMOCAP database have been
annotated as described above. Table 1 shows a summary
of the laughter annotations. The first three columns present
the number of occurrences and the duration information for
clean, noisy and cross-talk conditions. The last column of
the table is a summary of laughter annotation of speakers
before pruning the noisy and cross-talk conditions. After
pruning the noisy and cross-talk segments, the total du-
ration of laughter segments decreases from 382.00 sec to
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213.92 sec. The average duration of the laughter segments
also decreases from 1.54 sec to 0.93 sec. This is due to the
pruning process, which splits some long laughter segments
into shorter ones. Note that we try to keep as much clean
laughter data as possible to use them in model training.

As given in Table 1, the total duration of clean laughter
sequences is 213.92 sec, while the annotated IEMOCAP
database is 8 hours. This causes an data imbalance between
the two event classes of interest, laughter and non-laughter.
To train our classifiers, we construct a balanced database
(BLD) which includes all clean laughter segments and a
subset of non-laughter audio segments from IEMOCAP,
excluding all noisy and cross-talk laughter segments. The
non-laughter samples, which define a reject class for the
laughter detection problem, are picked randomly so as to
match the total duration of laughters.

4 METHODOLOGY

The main objective in this work is to detect laughter seg-
ments in naturalistic dyadic interactions using audio, head
and facial motion. The block diagram of the proposed
system is illustrated in Figure 2. Audio and face motion
capture data are inputs to the system, from which short-
term audio and motion features are extracted. Audio is rep-
resented with mel-frequency cepstral coefficients (MFCCs)
and prosody features, whereas motion features are extracted
from 3D facial points and head tracking data in the form of
positions, displacements and angles. Two different types of
classifiers, i.e., support vector machines (SVM) and time-
delay neural networks (TDNN), receive a temporal window
of short-term features or their summarizations in order
to perform laughter vs non-laughter binary classification.
The classification task is repeated for every 250 msec over
overlapping temporal windows of length 750 msec. While
the TDNN classifier works on short-term features, the SVM
classifier runs on statistical summarization of them. Both
types of classifiers make use of bagging so as to better
handle data imbalance between laughter and non-laughter
classes. Finally, different classifier-representation combina-
tions are integrated via decision fusion to perform laughter
detection on each temporal window.

4.1 Audio Features

Acoustic laughter signals can be characterized by their
spectral properties as well as their prosodic structures. The
mel-frequency cepstral coefficient (MFCC) representation is
the most widely used spectral feature in speech and audio
processing, and it was successfully used before in charac-
terizing laughters [3]. We compute 12-dimensional MFCC
features using a 25 msec sliding Hamming window at inter-
vals of 10 msec. We also include the log-energy and the first
order time derivatives into the feature vector. The resulting
26-dimensional spectral feature vector is represented with
fM .

Prosody characteristics at the acoustic level, including
intonation, rhythm, and intensity patterns, carry important
temporal and structural clues for laughter. We choose to
include speech intensity, pitch, and confidence-to-pitch into
the prosody feature vector as in [33], [34]. Speech intensity is

extracted as the logarithm of the average signal energy over
the analysis window. Pitch is extracted using the YIN fun-
damental frequency estimator, which is a well-known auto-
correlation based method [35]. Confidence-to-pitch delivers
an auto-correlation score for the fundamental frequency of
the signal [34].

Since prosody is speaker and utterance dependent, we
apply mean and variance normalization to prosody features.
The mean and variance normalization of prosody features is
performed over small connected windows of voiced articu-
lation, which exhibits pitch periodicity. Then the normalized
intensity, pitch, confidence to pitch features and the first
temporal derivative of these three parameters are used to
define the 6-dimensional prosody feature vector denoted
by fS . The extended 32-dimensional audio feature is then
obtained by concatenating spectral and prosody feature
vectors: fA = [fMfS ].

4.2 Head and Facial Motion Features
We represent the head pose using a 6-dimensional feature
vector fH that includes x, y, z coordinates of the head
position and the Euler angles representing head orientation
with respect to three coordinate axes. The reference point for
the head position and the three coordinate axes are common
to all speakers and computed from face instances with
neutral pose [29]. We will refer to fH as static head features,
whereas dynamic head features will be represented by ∆fH ,
which are simply the first derivatives of static features. We
note that dynamic head features are less dependent to global
head pose and carry more explicit information about head
movements that are discriminative for laughter detection
such as nodding up and down. Note also that the few
methods existing in the literature that incorporate explicit
3D head motion for laughter detection [5], [6] calculate head
related features based on positioning of head with respect to
full body such as the distance between shoulders and head
as in [5]. However these features are not applicable when
dealing with audio-facial data which does not include full
body measurements.

Likewise we define two sets of facial features: static facial
features and dynamic facial features. The static facial feature
vector is obtained by concatenating the 3D coordinates of
the tracked facial points. Hence the dimension of this vector
is 3 ×M , where M is the number of facial points, which is
at most 53 in our case. We assume that scale is normalized
across all speakers and the 3D coordinates are given with
respect to a common origin which is tip of nose in the IEMO-
CAP database [29]. We denote the static facial feature vector
by fP and the dynamic facial feature vector by ∆fP which
is the first derivative of the static version. We note that pose
invariance is less of a problem in this case compared to head
motion since facial points are compensated for rigid motion.

4.3 Feature Summarization
We use feature summarization for temporal characterization
of laughter. For feature summarization, we compute a set of
statistical quantities that describe the short-term distribution
of each frame-level feature over a given window. These
quantities comprise 11 functionals, more specifically mean,
standard deviation, skewness, kurtosis, range, minimum,
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Fig. 2. Block diagram of the proposed laughter detection system. The diagram shows the best performing setup for classifier-feature combinations.

maximum, first quantile, third quantile, median quantile
and inter-quantile range, which were successfully used be-
fore by Metallinou et al. [36] for continuous tracking of
emotional states from speech and body motion. We denote
the window-level statistical features resulting from summa-
rization of frame-level features f by F . Hence the statistical
features computed on audio, static and dynamic head and
facial features are represented by FA, FH , ∆FH , FP and
∆FP , respectively. The dimension of each of these statistical
feature vectors can be calculated as 11 times the dimension
of the corresponding frame-level feature vector. We will use
these window-level statistical features later to feed SVM
classifiers for laughter detection.

4.4 Discriminative Analysis of Facial Laughter
In this subsection, we perform discriminative analysis on
facial points to determine the relevance of each point in
formation of laughter expression over the given database.
We also explore possible correlations between facial points
in order to eliminate redundancies in distinguishing laugh-
ter. Such correlations exist especially between symmetrical
facial points (e.g., right cheek vs left cheek) and between
points belonging to a muscle group. We will later use
the results of this analysis to define optimal sets of facial
features to be fed into our classification pipeline for laughter
detection.

We employ the feature selection method mRMR (mini-
mum Redundancy Maximum Relevance) [37]. This method
assigns an importance score to each feature, which measures
its relevance to target classes under minimum redundancy
condition. Relevance is defined based on mutual informa-
tion between features and the corresponding class labels
(laughter vs non-laughter in our case), whereas redundancy
takes into account the mutual information between features.
Hence when features are sorted in a list with respect to
importance in descending order, the first m features from
this list form the optimal m-dimensional feature vector that
carries the most discriminative information for classifica-
tion. Another useful feature selection method that we utilize
is called as maxRel (Maximum Relevance) [37], which ranks
features without imposing any redundancy condition and
takes only relevance into account when assigning impor-
tance to features. We report the results using both methods,
maxRel in order to observe importance of individual points
for laughter, and mRMR to find optimal subsets of features
to be fed into our classification engine.

We extract window-level statistical features from a real-
ization of the BLD with their class labels and apply mRMR

and maxRel methods. Both methods result in a feature
ranking list. Since each facial marker point on the face
has 3 × 11 statistical features in our case, the complete
list has 53 × 3 × 11 features, where 53 is the number of
facial markers. To quantify the importance of each facial
point based on this ordered list of features with individual
scores, we employ a voting technique. Each point collects
votes from 33 contributor features, where each contributor
votes in proportion to its importance score resulting from
maxRel or mRMR. The accumulated votes finally sum up to
an overall importance score for each facial point.

For visualization, the importance scores resulting from
the underlying selection process are used to modulate the
radius of a disc around each marker point. Figures 3a and
3b display the results of maxRel and mRMR for static facial
features FP , respectively. In these figures, the size of a disc
is proportional to the importance of its center point. In the
case of maxRel, as expected we observe a more symmetric
and balanced distribution of importance which is focused on
certain regions of the face, especially on mouth and cheek
regions. In the case of mRMR however, we see that the
distribution is not that symmetric and the distribution of
importance tends to concentrate on fewer points.

Figures 3c and 3d display the results of maxRel and
mRMR for dynamic facial features ∆FP , respectively. For
dynamic features, it is evident that most of the relevance is
concentrated, with a symmetric and balanced distribution,
on mouth and chin regions which have relatively good
amount of movement than any other regions of the face.
In mRMR results however, we see that the points over chin
region no longer appears to be important. This is probably
because the motion of the points on the mouth carries very
similar information since lower lip points can rarely move
independently from the chin. In Figure 3d, we also observe
that points around the eyes start to get more importance,
which is an indication of genuineness of the laughters in the
database [2].

4.5 Classification
As discussed briefly at the beginning of this section, two
statistical classifiers, SVM and TDNN, are employed for the
laughter detection system. SVM is a binary classifier based
on statistical learning theory, which maximizes the margin
that separates samples from two classes [38]. SVM projects
data samples to different spaces through kernels that range
from simple linear to radial basis function (RBF) [39]. We
consider the summarized statistical features as inputs of the
SVM classifier to discriminate laughter from non-laughter.
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(a) (b)

(c) (d)

Fig. 3. Visualization of importance of facial points for laughter using
(a) maxRel - static features, (b) mRMR - static features, (c) maxRel -
dynamic features, and (d) mRMR - dynamic features. The size of a disc
is proportional to importance of its center point.

On the other hand, TDNN is an artificial neural network
model in which all the nodes are fully connected by directed
connections [40]. Inputs and their delayed copies construct
the nodes of the TDNN, where the neural network becomes
time-shift invariant and models the temporal patterns in
the input sequence. We use the TDNN classifier to model
the temporal structures of laughter events as it has been
successfully used by Petridis et-al. [11]. In this work, we
adopt their basic TDNN structure, which has only one
hidden layer. The further details of the classifier structure,
its parameters and the optimization process are explained
in Section 5.

4.5.1 Bagging
In the nature of daily conversations, laughter occurrences
and their durations are sparse within non-laughter utter-
ances. This data imbalance problem has been pointed out in
Section 3.1. This problem has been addressed and several
solutions have been suggested in the literature [41]. For
instance, SVM classifier performs better when class samples
are balanced in the training [42]. Otherwise, it tends to
favor the majority class. To deal with this problem, several
methods have been proposed, such as down-sampling the

majority class or up-sampling the minority class by pop-
ulating with noisy samples. We choose to down-sample
the majority class and use the BLD database for model
training as defined in Section 3.1. Since the BLD database
includes a reduced set of randomly selected non-laughter
segments, it may not represent the non-laughter class fairly
well. We use bagging to compensate this effect, where a bag
of classifiers is trained on different realizations of the BLD
database and combined using the product rule for the final
decision [43], [44]. Hence in bagging, each classifier has a
balanced training set, modeling the non-laughter class over
different realizations. The bagging approach is expected
to bring in modeling and performance improvements. We
investigate the benefit of bagging in laughter detection and
report performance results in Section 5.

4.5.2 Fusion
The last block of Figure 2 is multimodal fusion, where we
perform decision fusion of classifiers with different feature
sets. Decision fusion of multimodal classifiers is expected to
reduce the overall uncertainty and increase the robustness
of the laughter detection system. Suppose that N different
classifiers, one for each of the N feature representations
f1, f2, ..., fN , are available, and for the n-th classifier a 2-
class log-likelihood function is defined as ρn(λk), k = 1, 2,
respectively for the laughter and non-laughter classes. The
fusion problem is then to compute a single set of joint log-
likelihood functions ρ(λ1) and ρ(λ2) over these N different
classifiers. The most generic way of computing joint log-
likelihood functions can be expressed as a weighted sum-
mation:

ρ(λk) =
N∑

n=1

ωnρn(λk) for k = 1, 2, (1)

where ωn denotes the weighting coefficient for classifier n,
such that

∑
n ωn = 1. Note that when ωn = 1

N ∀n, (1)
is equivalent to the product rule [43], [44]. In this study,
we employ the product rule and set all weights equal for
decision fusion of the multimodal classifiers.

5 EXPERIMENTAL RESULTS

Experimental evaluations are performed across all modal-
ities, including audio features and static/dynamic motion
features using SVM and TDNN classifiers. All laughter
detection experiments are conducted in leave-one-session-
out fashion, which results in a 5-fold train/test performance
analysis. Since subjects are different across sessions, the
reported results are also speaker independent. In each fold,
training is carried out over a realization of the BLD, which
is extracted from the four training sessions. Hence, the
training set is balanced and does not include noisy and
cross-talk samples. In the testing phase, laughter detection
is carried out over the whole test session data, including
all non-laughter segments and all laughter conditions. As
discussed in Section 4, laughter detection is performed
as a classification task for every 250 msec over temporal
windows of length 750 msec. Any temporal window, which
contains a laughter segment longer than 375 msec, is taken
as a laughter event.
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For the SVM classifiers, the RBF kernel is used for all
modalities with the hyper-parameters c and γ. In order to
set the hyper-parameters, we execute independent 4-fold
leave-one-session-out validation experiments for each fold
of the 5-fold train/test. In these validation experiments, the
classification performance is evaluated on a grid of hyper-
parameter values. Finally, we set the c and γ parameters so
as to maximize the classification performance. Note that this
procedure yields different parameter settings for each fold
of the 5-fold train/test evaluation, but on the other hand
it ensures independence of the parameter setting procedure
from the test data.

The TDNN classifiers are defined by two parameters,
number of hidden nodes and time-delay. Since TDNN clas-
sifiers exhibit increasing performance as number of hidden
nodes and time-delay increase, we tend to set these pa-
rameters as low as possible to minimize the computational
complexity (for especially training phase) while maintaining
a high classification performance.

Finally, the resulting laughter detection performances are
reported in terms of area under curve (AUC) percentage of
the receiver operating characteristic (ROC) curves, which
represents the overall performance over all operating points
of the classifier [45]. Note that AUC is 100% for the ideal
classifier and 50% for a random classifier.

5.1 Results on Audio

The SVM and TDNN classifiers are considered for audio
laughter detection experiments. In the case of SVM, the
summarized audio features, FM and FA, are used. Recall
that FM includes spectral features, whereas FA includes
both prosodic and spectral features. Probabilistic outputs of
the SVM classifier are obtained and then the ROC curves are
calculated. In TDNN, a single hidden layer with 30 nodes
using frame-level features, fM and fA, is employed, and
likelihood scores of the laughter and non-laughter classes
are produced by the output layer, which has two nodes. The
time-delay parameter is used as 4 as in [11]. We also apply
10-fold bagging to the best performing classifiers.
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Fig. 4. Audio laughter detection ROC curves and AUC performances
of the SVM and TDNN classifiers with different feature sets and
with/without bagging.

Figure 4 plots all ROC curves and reports AUC perfor-
mances for six classifier-feature combinations. We observe
that the ROC curves are clustered into two groups, where
the SVM classifiers without bagging constitute the first
group with lower performances. Note that, bagging helps
more to the SVM classifier with 3% AUC performance
improvement, whereas the TDNN classifier improves 0.8%
with bagging. The best performing classifier-feature com-
bination is observed as the TDNN classifier with bagging
using the audio feature fA, which achieves 88.0% AUC
performance.

5.2 Results on Head and Facial Motion
Laughter detection from head and facial motion features
is performed by using SVM and TDNN classifiers. The
parameters of the TDNN classifier, number of hidden nodes
(nh) and time-delay (τd), are set for the motion features by
testing a fixed number of configurations with τd = 4, 8, 16
and nh = 5, 10, 20.

In our preliminary studies, the static head features, fH

and FH , have performed poorly for laughter detection,
possibly due to the fact that these features have severe
pose invariance problems. Hence in this paper, we consider
only the dynamic features ∆fH and ∆FH for head mo-
tion representation. The laughter detection performances
of the TDNN classifiers for varying τd and nh values are
given in Table 2. We observe that TDNN achieves the best
AUC performance as 87.2% with parameters τd = 16 and
nh = 20. Yet, the other AUC performances with number of
hidden nodes 10 and 20 are all close to the best performance.
The parameters for the final head-motion based laughter
detection system are fixed as τd = 8 and nh = 20, since they
attain lower computational complexity and sustain 87.0%
AUC performance. On the other hand, the SVM classifier
attains 81.5% AUC performance with static head features.
Hence, in our experiments with bagging and fusion, we
keep using the TDNN classifier with the dynamic head
motion features.

TABLE 2
The AUC performances (%) of TDNN classifiers with dynamic head

features ∆fH and with varying delay τd and number of hidden nodes
nh.

Hidden Nodes (nh)
Delay (τd) 5 10 20
4 84.0 85.5 86.3
8 85.4 86.5 87.0
16 85.1 86.3 87.2

For laughter detection from facial motion, we consider
both static and dynamic features, fP , FP , ∆fP and ∆FP .
We perform extensive experiments for the following three
objectives: 1) to determine the best performing classifier-
feature combinations, 2) to set the best facial feature selec-
tion based on the discriminative analysis results presented
in Section 4.4, and 3) to select the hyper-parameters of the
TDNN classifiers.

For the first two objectives, we take two settings for the
TDNN classifier, one with (τd = 4, nh = 5) and the other
for a more complex structure with (τd = 4, nh = 20). Then,
we test all possible feature-classifier combinations (static
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vs dynamic and TDNN vs SVM) with varying number
of features selected based on the mRMR discriminative
analysis. In Figure 5, we plot the AUC performances of these
combinations with varying feature dimensions.
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Fig. 5. AUC performances of laughter detection using discriminative
static and dynamic facial features at varying dimensions.

In Figure 5, we observe that for static facial features, the
SVM classifier performs significantly better than the TDNN
classifiers and attains its best AUC performance as 97.2% at
feature dimension 23. Its performance saturates at this point
and then starts to degrade slightly with 96.9%, 94.8% and
95.2% for feature dimensions 30, 40 and 50, respectively.
Hence in the upcoming experiments we employ the SVM
classifier for the static facial feature FP with feature dimen-
sion 23.

As for the dynamic facial features, the TDNN classi-
fiers outperform the SVM classifier. When we consider the
performance of the TDNN classifiers under two different
hyper-parameter settings, we observe an overall peak at
feature dimension 4. Hence in the upcoming experiments,
we set the TDNN classifier with the dynamic facial features
∆fP with feature dimension 4.

For the third objective, we evaluate the performance of
the TDNN classifier for dynamic facial features over varying
values of τd and nh. Table 3 presents these performance
evaluations. Since the AUC performances at nh = 20 are
higher compared to other nh settings and do not exhibit
significant changes for varying values of τd, we set the
parameters as τd = 4 and nh = 20, which yield lower
computational complexity due to a smaller delay parameter.

TABLE 3
The AUC performances (%) of TDNN classifiers with dynamic facial

features ∆fP at feature dimension 4 with varying delay τd and number
of hidden nodes nh.

Hidden Nodes (nh)
Delay (τd) 5 10 20
4 87.2 90.9 92.2
8 86.2 91.1 92.4
16 86.1 89.4 92.1

Finally, we evaluate the performance of bagging for
the best classifier-feature combinations, which are TDNN

with dynamic head and facial features and SVM with static
facial features. Figure 6 displays the ROC curves and AUC
performances of these three classifier-feature combinations
with and without bagging. Note that when bagging is
incorporated, the performance of the TDNN classifiers with
dynamic head and facial features improves attaining respec-
tively 88.3% and 92.5% AUC values. On the other hand,
bagging does not help the SVM classifier with static facial
features, which attains 97.2% AUC performance without
bagging.
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Fig. 6. ROC curves and AUC performances of laughter detection from
head and facial features using different classifier-feature combinations
with and without bagging.

5.3 Fusion Results
The best performing classifier-feature combinations are in-
tegrated using the product rule defined in Section 4.5.2.
Four classifier-feature combinations, SVM-fP , TDNN-∆fP ,
TDNN-∆fH and TDNN-fA, are cumulatively populated,
where all except SVM-fP are with 10-fold bagging. Figure 7
presents the ROC curves and AUC performances of three
fusion schemes, which respectively have the best AUC
performances for fusion of two, three and four classifiers.
The best fusion scheme for two classifiers (Fusion2) is
between SVM-fP (FaceSta) and TDNN-fA (Audio), which
achieves 98.2% AUC performance. The best fusion scheme
for three classifiers (Fusion3) is between SVM-fP (FaceSta),
TDNN-∆fP (FaceDyn) and TDNN-fA (Audio) with 98.3%
AUC performance. Finally, the fusion of all four classifiers
(Fusion4) attains 98.0% AUC performance.

We further assess the performance of our audio-facial
laughter detection schemes by using other common perfor-
mance measures, such as recall, precision and F1 score. We
set 2% false positive rate (FPR) as the anchor point on the
ROC curve. At this anchor point, we first evaluate the re-
call performance under clean, cross-talk and noisy laughter
conditions in Table 4. We observe that multimodal fusion
of classifiers performs significantly better for all conditions.
Static face features with SVM classifier perform reasonably
well under cross-talk and noisy conditions, while audio
features with the TDNN classifiers suffer heavily in these
cases. The Fusion3 scheme, which already has the best AUC
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Fig. 7. ROC curves and AUC performances of laughter detection with
fusion of best classifier-feature combinations, face static (SVM-fP ), face
dynamic (TDNN-∆fP ), head dynamic (TDNN-∆fH ) and audio (TDNN-
fA)

performance, also yields the best recall performances except
for the noisy condition. Note that dynamic head features
with TDNN improve the multimodal fusion performance
under noisy conditions, which makes the fusion of four
classifiers, Fusion4, to be the most robust one against noise.

TABLE 4
Recall performances under all, clean, cross-talk and noisy laughter
conditions for unimodal and multimodal classifiers at 2% FPR point

All Clean Cross-talk Noisy
Fusion3 83.2 80.4 87.6 86.5
Fusion4 82.7 80.2 86.6 88.5
Fusion2 79.0 77.1 82.3 82.7
FaceSta 73.1 67.9 80.0 80.8
Audio 40.9 50.1 29.2 34.8
FaceDyn 40.1 36.3 45.2 45.5
HeadDyn 28.0 27.4 28.9 48.5

Table 5 presents recall, precision and F1 score per-
formances of the unimodal and multimodal classifiers at
2% FPR anchor point. Note that these performances are over
all laughter conditions. As expected, the precision scores
are lower than the recall scores due to data imbalance.
Yet again, the best precision and F1 score performances
are obtained with multimodal fusion, where the best is the
Fusion3 scheme.

TABLE 5
Recall, precision and F1 scores of laughter detection with unimodal

and multimodal classifiers at 2% FPR point

Recall(%) Precision(%) F1 score(%)
Fusion3 83.2 26.5 40.2
Fusion4 82.7 26.4 40.0
Fusion2 79.0 25.5 38.6
FaceSta 73.1 24.1 36.2
Audio 40.9 15.8 22.8
FaceDyn 40.1 15.5 22.4
HeadDyn 28.0 11.4 16.2

5.4 Discussion

We have reported the results of a detailed evaluation of
our laughter detection scheme using various combinations
of classifiers, modalities and strategies. Below we highlight
some important observations and findings drawn from
these experiments.

The discriminative analysis of laughter in Section 4.4
reveals that the facial laughter signal has a steady compo-
nent, such as the contractions on the cheek region, which
can be characterized with our positional (static) features,
as well as a dynamic component, such as the abrupt and
repetitive movements of head and mouth, that can be
represented with our differential (dynamic) features. Our
experiments also show that TDNNs can successfully capture
temporal characteristics of laughter by relying on frame-
level dynamic features while SVMs can model the steady
content via window-level summarization of static features.
We observe that the SVM classifier with the static face
features attains the best unimodal performance for laughter
detection among all other classifier-modality combinations
available.

The best classifier according to AUC performance is the
Fusion3, which is multimodal fusion of SVM with static face
features, TDNN with dynamic face features and TDNN with
audio features. Note that, although dynamic head features
with TDNN attain 88.3% AUC performance, it does not im-
prove the fusion of all classifiers, i.e., the Fusion4 classifier.
However, it brings 2% improvement in the recall rate of
noisy laughter segments, as observed in Table 4. Hence head
motion becomes valuable as a modality for laughter detec-
tion, especially in the presence of environmental acoustic
noise.

Our multimodal laughter detection scheme benefits from
the discriminative facial feature analysis presented in Sec-
tion 4.4 in two aspects. First, as observed in Figure 5, the
AUC performance drops more than 10% for the dynamic
face features as the feature dimension grows further be-
yond a certain point. Second, feature dimension reduction
helps to keep the training and testing complexities of the
classifiers low, which avails the possibility of real-time im-
plementations. In fact, the SVM and TDNN classifiers that
we employ are both well suited to real-time implementa-
tions with O(M) time complexity, where M is the size of
the feature vector. The latency of the detection system in
both cases is proportional to and actually a fraction of the
window duration over which a decision is given. In the
proposed framework, the worst mean computation times
of the SVM and TDNN classifiers running in Matlab 2014b
platform on a computer (Dell Latitude E5440) with Intel
Core i7, 2.1 GHz CPU, are measured as 8.7 and 11.3 msec,
respectively. Recently, we have utilized a real-time extension
of the proposed laughter detection framework for analysis
of engagement in HCI [46].

For the data imbalance problem, the bagging scheme has
been investigated with both SVM and TDNN classifiers. We
have observed that bagging brings much higher improve-
ments for the TDNN classifiers. In general, TDNN architec-
tures become harder to train as the number of parameters,
the number of nodes and delay taps increase. Although
we have a fairly large laughter database, it does not allow
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us to employ larger TDNN structures. The balanced BLD
database that we use in the training probably restricts the
TDNN from better learning the non-laughter class. This
could be the reason of the higher improvements that we
obtain with bagging in the case of TDNN.

Table 6 positions our work in the context of the related
work, and compares our approach with the state of the art
in laughter detection and recognition. Existing work can be
characterized as either recognition or detection frameworks.
Recognition frameworks assume that the data has been pre-
segmented into individual chunks, and the task reduces
to classifying each chunk using standard classification al-
gorithms. However, the data almost never comes in such
pre-segmented format. Hence one needs to automatically
segment the continuous data stream into smaller chunks
and classify them. This is called detection. Detection is a far
more challenging problem, because it requires identifying
segments in addition to recognition. Our method is a detec-
tion method, which sets it apart from most of the existing
work.

There are three frameworks that use only body move-
ments [5], [6], [14] for performing recognition on pre-
segmented laughters. Using various classification frame-
works and different datasets, all these three studies show
that body movements convey valuable information for
laughter recognition. The performance figures reported by
these methods are comparable to the ones which have audio
and face modalities.

The first seven studies in the table [10], [11], [12], [17],
[18], [19], [22], use audio and face information in recog-
nition and detection tasks. Two of them [12], [18] used
pre-segmented laughters. In [18], although they perform
recognition task, unimodal and multimodal performances
parallel our observations. That is, spectral features are the
main source of high performance while prosody features
can provide additional enhancement up to some point. Also,
the face modality leads to better performance compared to
audio, and the head movement information has the lowest
performance. The work in [12] describes a recognition sys-
tem, however, the results are valuable since they come from
a cross database evaluation spanning four different datasets
(AMI, SAL, DD and AVLC).

The next set of systems cover audio-facial laughter de-
tection [10], [11], [17], [19], [22]. In [10], although the authors
claim to present a detection method, the test results are
reported on a relatively small set of pre-segmented data.
The database used in this study is also unusually balanced
(60 laughters and 120 non-laughters), atypical of the highly
skewed distributions observed in naturalistic interaction.
Furthermore, the evaluation in this work has been carried
out by filtering away instances of smiles. This makes the
dataset further biased by removing conceivable false posi-
tive candidates and thus potentially inflating performance.
The best performance reported is 93% AUC-ROC for audio
and face fusion.

In [19], the authors propose a laughter detection system
and test it on 3 clips of 4-8 minutes each. Unlike our work,
the conversational data used in this study is not recorded
in a face-to-face interaction scenario, but through a video
call between separate rooms. In addition, laughter instances
constitute 10% of the whole data, which is quite high com-

pared to ours (1.33%). This imbalance makes our task much
more challenging.

Three threads of work [11], [17], [22] present proper
detection algorithms on continuous data streams using rel-
atively larger datasets. The method presented in [17] uses
only the mouth movements in the facial modality and
there is almost no performance improvement in multimodal
scheme over only audio modality. The work in [22] contains
2 clips of 90 minutes dyadic conversation. The major limi-
tation of this work is the lack of fine visual features in the
data stream. A video of the face and the body was recorded
simultaneously using a single omni-directional camera. The
camera captures the entire scene, and all the participants in
a single image, which makes it hard to capture fine level
facial detail and reliable facial features. As such, the added
benefits of the coarse visual information is unclear. Our
work fills in the gap in this respect by demonstrating that the
high resolution facial features based on tracked landmarks
do improve the performance of laughter detection.

Finally, the work in [11] can be regarded as representing
the state of the art in audio-facial laughter detection. Here,
the authors used the SEMAINE database with a fairly large
test partition. In audio, they used MFCCs and in the visual
modality they used FAPS information extracted from a facial
point tracker. Recall, precision and F1 scores are reported in
a speaker dependent scheme. Also, they have a voice activ-
ity detector to get rid of silent regions in data. In agreement
with our findings, they state that performance measures
(recall, precision) suffer from class skewness (sparse positive
class in natural interaction). They reported recall, precision,
and F1 scores of 41.9%, 10.3%, 16.4% respectively for the
audio-facial scheme. If one seeks a comparison with our
results, comparing F1 scores would be meaningful. Our
audio-facial F1 score for Fusion2 is given in Table 5 as 38.6%,
while they have reported audio-facial scheme F1 score as
16.4%.

6 CONCLUSION

We have introduced a novel audio-facial laughter detection
system and evaluated its performance in naturalistic dyadic
conversations. We have annotated the IEMOCAP database,
which was originally designed to study expressive human
interactions, for laughter events under cross-talk, noise and
clean conditions. In this annotated database, we have in-
vestigated the utility of facial and head motion and audio
for laughter detection using SVM and TDNN classifiers.
For the face modality, we have used low dimensional and
discriminative feature representations extracted using the
mutual information-based mRMR feature selection method.
Our experimental evaluations show that static motion fea-
tures perform much better with the SVM classifier for the
laughter detection task, whereas dynamic motion features as
well as audio features perform much better with the TDNN
classifier. One of the main findings of this work is that facial
information as well as head motion is useful for laughter
detection, especially under the presence of acoustic noise
and cross-talks. Although the facial analysis in the presented
system relies on the markers attached to skin, the marker
positions are consistent with the MPEG-4 standard, and 3D
tracking sensors such as Kinect can facilitate incorporation
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TABLE 6
Summary of the state of the art in laughter detection and recognition

Reference Year Task Modality Classifier Database Database Size Performance
[19] 2005 Detection Audio, Face

(Image Based)
GMM Own 3 clip, each 4-8

mins
Recall: 71%, Precision:
74

[18] 2008 Recognition Audio, Head
and Face Video
Tracking

NN AMI Laughter: 58.4
sec, Speech:
118.1 sec

F1: 86.5%, ROC-AUC:
97.8%

[10] 2008 Detection Audio, Face
Video Tracking

GMM, HMM,
SVM

AMI Total: 25 mins
(59% speech)

ROC-AUC: 93%

[17] 2009 Detection Audio, Face
Video Tracking

Gentle
Adaboost

New York
Times

Total: 72 mins Accuracy: 0.77, Sensi-
tivity: 0.65, Specificity:
0.77

[12] 2011 Recognition Audio, Face
Video Tracking

Neural Nets AMI, SAL, DD,
AVLC

Laughter: 33.6
min, Speech:
18.9 min

Average F1: 74.5

[22] 2012 Detection Audio, Face
and Body
activity from
video

HMM, SVM-
GMM, ESN

FreeTalk Total: 180 mins,
Laughter: 289
sec, Speech-
laugh: 307
sec

ESN Model, F1: 63%

[11] 2013 Detection Audio, Face
Video Tracking

TDNN SEMAINE Training: 77.3
min, Validation:
60.2 min, Test:
51.3 min

Recall: 41.9%, Precision:
10.3, F1: 16.4

[14] 2013 Recognition Body Motion
Capture

k-NN, RR, SVR,
KSVR, KRR,
MLP, RF, IR

Own 508 laughter, 41
non-laughter
segments

RF Model, MSE: 0:011,
CS: 0:91, TMR: 0:67, RL:
0:27, F1=74.4%

[6] 2015 Recognition Body Motion
Capture

k-NN, RR, SVR,
KSVR, KRR,
LASSO, MLP,
MLP-ARD, RF,
IR

UCL body
laughter
dataset

112 laughter, 14
non-laughter
instances

RF Model, F-score: 0.60
(laughter class)

[5] 2016 Recognition Body Motion
Capture

SVM, RF, k-NN,
NB, LR

MMLI Laughter: 27
min 3 sec,
Other: 46 min
18 sec

RF Model, Recall: 0.67,
Precision: 0.66, F-score:
0.66

Our
Method

2016 Detection Audio, Face
and Head
Motion Capture

SVM, TDNN IEMOCAP Total: approx. 8
hours, Laugh-
ter: 382 sec

ROC-AUC: 98.3% (Fu-
sion3)

of these facial features into real-time laughter detection
applications.

As future work, we think that the performance of our
laughter detection system can further be improved using
large scale training data, possibly by incorporating deep
neural network architectures, such as recurrent neural net-
works.
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