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Abstract

We express our emotional state through a range of ex-

pressive modalities such as facial expressions, vocal cues,

or body gestures. However, children on the Autism Spec-

trum experience difficulties in expressing and recognizing

emotions with the accuracy of their neurotypical peers. Re-

search shows that children on the Autism Spectrum can be

trained to recognize and express emotions if they are given

supportive and constructive feedback. In particular, pro-

viding formative feedback, (e.g., feedback given by an ex-

pert describing how they need to modify their behavior to

improve their expressiveness), has been found valuable in

rehabilitation. Unfortunately, generating such formative

feedback requires constant supervision of an expert. In

this work, we describe a system for automatic formative

assessment integrated into an automatic emotion recogni-

tion setup. Our system is built on an interpretable ma-

chine learning framework that answers the question of what

needs to be modified in human behavior to achieve a desired

expressive display. It propagates the desired changes to

human-understandable attributes through explanation vec-

tors operating on a shared low level feature space. We

report experiments conducted on a childrens voice data

set with expression variations, showing that the proposed

mechanism generates formative feedback aligned with the

expectations reported from a clinical perspective.

1. Introduction

The neuro-developmental conditions affecting commu-

nication and behavioral skills are referred to as Autism

Spectrum Conditions (ASC). The main characteristics ac-

companied with ASC can be listed as having difficulty in so-

cial communication and interaction with other people, hav-

ing restrictive interest, repetitive behaviors, and showing

symptoms that restrict these individuals from functioning

properly at any areas of life such as work or school [5]. Re-

search shows that individuals with ASC particularly strug-

gle with recognizing affective or mental states expressed by

others and expressing their own inner states [7]. These de-

ficiencies in recognition and expression of affect act as so-

cial communication barriers for individuals with ASC, keep

them from developing healthy social relationships, and lead

to social exclusion. There have been numerous technologi-

cal developments that target ASC population to teach them

emotion-related skills. Technologies such as ICPS - I Can

Problem-Solve [3], Emotion Trainer [2], Lets Face It [9],

or Mindreading [4] are examples that target to train indi-

viduals on emotion recognition and social communication

skills. However, there is a lack of interactive tools and tech-

nologies for assisting individuals on the Autism spectrum in

their quest to improve their skills for expressing emotions.

This work, is part of the European Union project called

ASC-Inclusion-Enlarged [1], which aims to address dif-

ficulties associated with training ASC children to better

express their own emotions and assess others’ emotions.

When assessing the emotional expressiveness of a subject,

automated emotion recognition technologies through any

or all of the expressive modalities of face, voice, or ges-

tures can be used. The emotion performed can be evaluated

through inference algorithms and the output can be used to

inform whether the attempt of displaying a particular emo-

tion was successful or not. However, such an approach

lacks any feedback on what they can do to improve their

expressiveness. In this work, we propose a formative as-

sessment approach to include a feedback mechanism which

would provide specific and comprehensible guidance for

improved performance. By receiving easy-to-understand

and targeted corrective feedback, individuals have the op-

portunity to learn how they should adjust their facial, vocal,

or gestural behavior to show prototypical emotions. The pa-

per is organized as follows: First, in Section 2, the proposed

formative assessment approach is explained. Section 3 sum-

marized the experimental results on the sample voice data.

Section 4 concludes the paper, outlining future directions as

well.
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2. Proposed Formative Feedback Generation

Scheme

The typical scenario for formative feedback involves a

person displaying a performance, with a target label in

mind. In the case of Autism rehabilitation, this is a child

who attempts to display a target emotion through a vari-

ety of channels (facial displays, voice, body language, ges-

tures). If the performer fails to express the emotion suc-

cessfully, the goal of the formative feedback module is to

generate human understandable explanations of what be-

havioral changes would move the performed instance closer

to the desired target. Formative feedback is generated on

a per-instance basis. Hence, there are two main inputs to

the formative feedback module: features extracted from the

performed instance, and the label of the expected (target)

class. Implicitly, there is a third input: the classifier that

classifies user input. In general, this classifier can come in

any form (e.g., an SVM, a PGM, or a Deep Network), and

our scheme does not force a particular kind of classifier.

Hence, to generalize the scheme to any kind of classifier,

a probabilistic black-box classification module is obtained

by estimating the input classifier, which serves as the third

input to the formative feedback system. Using the idea of

the explanation vectors of Baehrens et al. [6], these three

inputs are used to obtain feature modifications required to

achieve the target classification on an instance basis. Using

these explanations, the original feature can be modified to

convert the input instance into one whose prediction deci-

sion matches the target. The difference between the orig-

inal and the modified feature sets can be used to describe

the necessary corrections. However, providing corrections

at the feature level will not be comprehensible from a user

perspective. Therefore, it is necessary to define high-level

attributes and obtain the necessary alterations in terms of

these. To generate the formative feedback, attribute ex-

traction is run on both the original and the modified fea-

ture sets, and the difference between the original attributes

and the modified attributes is used to generate the seman-

tically meaningful formative feedback to the subject. The

two main contributions of this work are as follows: First of

all, the features are updated in an iterative manner to find the

minimum necessary alteration. Secondly, for the feedback

to be semantically meaningful, the necessary feature modi-

fications are mapped to a higher-level attribute space. In the

following three subsections, we describe the details of ex-

planation vectors generation, iterative feature modification,

and generation of semantically meaningful correction steps.

2.1. Explanation Vector Generation

Let’s assume that we have a training set of d-dimensional

points X = {x1,x2, . . . ,xn} with class labels Y =
{y1, y2, . . . , yn} ∈ {1, . . . , C}, where we have C distinct

classes of output labels and the joint distribution P (X,Y )

is unknown. The explanation vector of a given instance x0

for a target class label c can be computed as the derivative

of the conditional probability for the given input instance:

ζc(x0) =
∂

∂x
P (Y 6= c|X = x)

∣

∣

∣

x=x0

(1)

Here, ζc is a d-dimensional vector like the original input

instance, defining the flow away from the corresponding

class: The entries with high absolute values will point out

features that have high influence on the classification deci-

sion, where positive and negative signs indicate individual

features whose values should be decreased or increased, re-

spectively, to better resemble the target class.

To generate explanations for an unknown classifier g(·),
first of all we have to estimate the classifier. Then the ex-

planation vector will be computed using the estimation ĝ(·)
and the class label given by the classifier. In this work, we

have considered Kernel Density Estimation [8] to estimate

the joint probability for the given class label:

p̂σ(x, y = c) =
1

n

∑

i∈Ic

kσ(x− xi) (2)

where kσ(·) is the kernel function and Ic is the index set for

the given class. Here, we employed Gaussian kernel and es-

timated the conditional probability distribution as follows:

p̂σ(y = c|x) ≈

∑

i∈Ic
kσ(x− xi)

∑

i kσ(x− xi)
(3)

The explanation vector for instance z and expected class

label c can be defined as follows:

ζ̂c(z) =
∂

∂x
p̂σ(y 6= g(z)|x)

∣

∣

∣

x=z

(4)

Using g(z) outputs instead of c class labels allows us to

interpret the classification decisions of our black-box clas-

sifier (assuming ĝ(·) approximates g(·) well).

2.2. Iterative Feature Modification

The explanation vector defines the direction of the flow

away from the corresponding class. However, the magni-

tude of the vector does not embody any information about

how much change is needed to resemble the target class bet-

ter. As in the gradient descent algorithm, the explanation

vector can be computed in an iterative manner until conver-

gence to the target class is achieved. Moreover, a predefined

step size can be employed for each iteration. As a fixed step

size, we compute the minimum inter sample distance:

ds = min
i∈{1,...,n},j∈{1,...,n}\i

||xi − xj || (5)

At each iteration, using the directional information residing

in the explanation vector and the calculated step size, the

input instance (feature) is modified:
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z(t+1) = z(t) −
ds · ζ̂c(z(t))

|ζ̂c(z(t))|
(6)

After each iterative modification, the decision of the classi-

fier (either g(·) or ĝ(·)) will be checked to see if conver-

gence to the target class is achieved. Once convergence

is reached, iterative computation of the explanation vectors

and feature updates will result in a modified feature set com-

prising the minimal amount of change needed.

2.3. Attribute­based Feedback Generation

Once convergence at the feature space is obtained, the

difference between the original and the modified feature set

gives the minimum change needed for the instance to be

classified from the target class. However, computing this

difference at the feature space and providing it as a feedback

to the user will not be comprehensible as the feature space

can be very high dimensional and even the little changes

needed at feature level would fire up in the difference vector.

In this work, we propose to switch to a high-level attribute

level which would enable us to provide semantically mean-

ingful feedback to the user. The high-level attribute space

can either be defined by careful selection of meaningful set

of features, or it can require to switch to this high-level

space by running pre-trained attribute extractor. It should

be noted that defining semantically meaningful attributes is

highly dependent on the feature space and the classification

problem.

3. Experimental Results on Voice Modality

3.1. Voice Database and Emotional­Attributes

In order to test our proposed formative feedback gener-

ation approach, we experimented with a sample emotional

voice dataset, consisting of 1534 instances labeled for 27
emotional classes. For each instance, 6373 vocal features

were available.

As an initial step, we defined semantically meaningful

attributes for the voice modality considering a variety of

affective states. We mainly referred to the relations short-

listed by our clinical partners, where modality-specific char-

acteristics are given for different emotions. The attributes

shortlisted are as follows: (1) pitch, (2) pitch variation, (3)

loudness, and (4) speech rate. For our initial analysis, we

focused on two basic emotions of Happy and Sad. Voice

attributes and their expected associations to these two basic

emotions are given in Table 1. However, these associations

only define the relations at a very coarse level, as actual data

would not exactly abide these rules.3.2. Classifier Approximation with Kernel Density
Estimation

A simple thresholding approach for formative assess-

ment, where we would decide on the correctness of an at-

Table 1. Attribute candidates and attribute-emotion associations

for the voice modality. (H and L stand for high, and low values.)

Happy Sad

Pitch H L

Pitch Variation H L

Loudness H L

Speech Rate H L

tribute using its respective location to the threshold (e.g. at-

tribute mean), would fail on realistic data. The proposed ap-

proach based on explanation vector generation is expected

to yield more accurate explanations related to classifier’s

decisions.

For our initial experiments, we focused on the two-class

classification problem (Happy vs. Sad), and utilized only

the instances of these two classes. Keeping the ratio of

the two emotion instances approximately the same, we have

spared 14 happy and 11 sad instances for testing. Since we

have a limited number of training examples (60 happy and

45 sad), we have employed Leave-One-Out cross validation

for hyper-parameter optimization. This randomized separa-

tion of training and test sets is handled for 20 repetitions.

The mean test accuracy obtained with KDE over all repeti-

tions is 73.6%.

3.3. Explanation Vectors and Modified Features

After the classifier is estimated with the KDE, the ex-

planation vectors for a single iteration can be computed as

given in Equation (4). The explanation vector generation

and feature modification steps will be handled in an iterative

manner, where the iteration structure and the convergence

rule is given in Section 2.2. For our preliminary experi-

ments, where we have considered two emotion classes, we

have considered each instance of a class as a misexpressed

instance of the opposite class: For example, for a Happy in-

stance, the explanation vector generation and feature mod-

ification iterations are run, where the target class is Sad for

the convergence rule.

For the voice modality, the attributes that we want to

give feedback on are directly included in the input features.

Therefore, we directly investigated the alterations caused on

these four attributes. The attribute-specific means of all in-

stances from all six basic emotions are used as thresholds to

binarize the attribute values. In Figure 1, each row gives the

bar plots of Happy (left) and Sad (right) instances, when

the attribute values are considered as either Low or High

when compared with the attribute-specific threshold. For

example, for Happy instances (left-top plot), the features

are modified so that each instance is classified as from the

Sad class. Here, the bar plots for the pitch attribute are given

for before modification and for after modification. As ex-

pected, the number of instances with low pitch is increased,
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whereas the number of instances with high pitch value is

decreased. This trend is opposite for the Sad instances (top-

right plot). Moreover, we see similar trends for the other

attributes.
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(d)
Figure 1. Histograms of binarized attribute values are given for

before (blue) and after (pink) modification states for: (a) pitch, (b)

pitch variation, (c) loudness, (d) speech rate attributes. Plots on

left and right are for happy and sad instances, respectively.

4. Conclusion and Future Directions

In this work, we propose a method to generate compre-

hensible corrective feedback to guide children with ASC in

expressing their emotions better. Based on the explanation

vector generation approach of Baehrens et al. [6], we pro-

pose to modify features in an iterative manner until they

resemble the target class, and the minimum required alter-

ations are expressed in terms of high-level attributes to pro-

vide semantically meaningful corrections. The initial ex-

periments on the voice modality showed that we were able

to generate feedback aligned with the expectations from a

clinical point of view.

As future directions, we target to evaluate the gener-

ated formative feedback from a user perspective, assess-

ing whether they are semantically meaningful. For per-

formance improvement, use of a larger training set is nec-

essary. Moreover, the current module can be extended to

work on a larger set of emotions. Additionally, high-level

attributes that do not reside in the feature space can be con-

sidered when providing the corrective feedback.
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