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a b s t r a c t

In typical human–computer interaction, users convey their intentions through traditional input devices
(e.g. keyboards, mice, joysticks) coupled with standard graphical user interface elements. Recently, pen-
based interaction has emerged as a more intuitive alternative to these traditional means. However,
existing pen-based systems are limited by the fact that they rely heavily on auxiliary mode switching
mechanisms during interaction (e.g. hard or soft modifier keys, buttons, menus). In this paper, we
describe how eye gaze movements that naturally occur during pen-based interaction can be used to
reduce dependency on explicit mode selection mechanisms in pen-based systems. In particular, we show
that a range of virtual manipulation commands, that would otherwise require auxiliary mode switching
elements, can be issued with an 88% success rate with the aid of users' natural eye gaze behavior during
pen-only interaction.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Pen-based devices are gaining popularity. Pen-enabled smart
phones and tablet computers have penetrated our lives to a great
extent due to their mobility, ease of use and affordable prices.
However, despite what their name suggests, pen-based devices are
not purely pen-based (Plimmer, 2008).

For example, in pen-enabled smart phones, many actions force
the user to put the pen aside and switch to multi-finger gestures
(e.g. spread/pinch for zoom in/out, and swipe to navigate back/
forward). These gestures require the simultaneous use of 2, 3 or
even 4 fingers (Fig. 1a). The necessity of switching between pen
and multi-touch input goes against the goal of seamless interac-
tion in pen-based devices.

Even the state of the art devices and software specifically built
for pen-based interaction lack purely pen-based interaction. For
example, graphics tablets preferred mainly by digital artists such
as Wacom Cintiq 24HD (Fig. 1b) are often referred to as “heaven on
earth” by users. However, even with these high-end models many
tasks are still accomplished via on-pen or on-tablet external
buttons called “express keys”, “touch rings” and “radial menus”.
These buttons allow the user to simulate keystrokes including
letters, numbers and modifier keys (e.g. Shift, Alt and Control). To
issue a virtual manipulation command (e.g. scroll), the user has to

locate the correct button which interrupts the interaction flow,
hence causing an overall disappointing experience.

Another example where we lose purely pen-based interaction
is with tablet computers. In most pen-based applications, features
are hidden in standard context/pop-up menus that are accessed
via tapping and/or holding the pen on the tablet screen in various
ways (Fig. 1c). In this case, the pen is used to trigger mouse clicks,
which fits the traditional GUI/WIMP-based interaction paradigm,
rather than that of a purely pen-based interaction (Fig. 1d).

These issues show that existing pen-based systems depend
substantially on multi-finger gestures, context/pop-up menus and
external buttons which goes against the philosophy of pen-based
interfaces as a more intuitive interaction alternative. In this paper,
we show that eye gaze movements that naturally accompany pen-
based user interaction can be used to infer a user's task-related
intentions and goals. The non-intrusive and transparent use of eye
gaze information for task prediction brings us closer to the goal of
purely pen-based interaction and reduces the reliance on multi-
finger gestures, context/pop-up menus and external buttons.

Our approach consists of tracking eye gaze movements of
the user during pen-based interaction, fusing the spatio-tem-
poral information collected via gaze and sketch modalities in
order to predict the current intention of the user. We use the
term “intention” to refer specifically to the intention of the user to
issue a virtual manipulation command. Virtual manipulation
commands that we can currently predict are: drag, maximize,
minimize and scroll. Additionally, we can distinguish whether the
user intends to issue any of these virtual manipulation commands,
or intends to sketch using our special-purpose task class called
free-form drawing.
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Our overall approach to gaze-based prediction of virtual inter-
action tasks is depicted in Fig. 2. The left part of the diagram shows
how we build our system whereas the right part shows how our
system performs predictions. After we build our system, it can be
used to infer user's task-related intentions and goals in an event-
driven manner where each pen marking triggers prediction.

Briefly, our system is built as follows: Initially we collect sketch and
gaze data during a number of pen-based interaction tasks and build a
multimodal database. We then extract novel gaze-based features from
this database and train a task prediction model using supervised
machine learning techniques. These steps are executed only once.
Then, our system is ready for prediction. When the user performs a
pen action (demarcated by a pen-down and a pen-up event), the
synchronized pen trajectory and eye gaze information is used to
predict the user's intended virtual task. Predictions are carried out by
the previously trained model and the features extracted from the
corresponding sketch–gaze data of the user. Detailed description and
discussion of our approach can be found in the following sections.

We have three main contributions. First, we present a carefully
compiled multimodal dataset that consists of eye gaze and pen input
collected from participants completing various virtual interaction
tasks. Second, for predicting user intention through gaze, we propose
a novel gaze-based feature representation based on human vision, and
behavioral studies. Third, we introduce a novel gaze-based task
prediction system that uses this feature representation. These features
are neither subject- nor interface-specific, and perform better than

commonly utilized and well-established sketch recognition feature
representations in the literature. We evaluate our system based on
several aspects, including the prediction accuracy and scale-invariance.
In addition, we run feature selection tests to evaluate the relevance
and redundancy of the feature representations. Our prediction system
opens the way for more natural user interface paradigms where the
role of the computer in supporting interaction is to “interpret user
actions and [do] what it deems appropriate” (Nielsen, 1993). It is
widely accepted that intelligent mode selection mechanisms that
provide low cost access to different interface operations will dominate
new user interface paradigms (Negulescu et al., 2010).

Section 2 gives an outline of the state-of-the-art gaze-based
interfaces in a categorical manner with relevant examples for each
category. Our approach consists of three major parts: data collec-
tion, feature extraction and intention prediction. These parts are
detailed in Sections 3–5, respectively. Section 6 concludes with a
discussion of our work and a summary of future directions.

2. Related work

We have presented a novel gaze-based interface for predicting
virtual manipulation commands during pen-based interaction.
State-of-the-art gaze-based interfaces fall under two main cate-
gories: command interfaces and non-command interfaces.

Fig. 1. Some examples to pen-based devices with interaction paradigms that are not purely pen-based. Gaze-based prediction of virtual interaction tasks in pen-based
interaction is a step towards systems that require fewer mode changes (Li et al., 2005). (a) Switching between pen and multi-touch input for object manipulation (e.g. image
resizing) in pen-based smart phones. (b) On-pen or on-tablet external buttons in pen-based graphics tablets. (c) Various tapping and/or holding techniques to access context/
pop-up menus in pen-based tablet computers. (d) The pen is used to emulate a mouse in pen-based tablet computers.
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Command interfaces are based on the eye-mind hypothesis,
in which, intentional eye movements are associated with interface
actions (Bednarik et al., 2012). In other words, in command
interfaces, gaze is employed as an explicit pointing device. This
requires the gaze to be used for manipulation in addition to its
natural purpose, visual perception. This approach forces the user
to be aware of the role of the eye gaze and therefore results in high
cognitive workload (Bader et al., 2009). Zhai et al. argue that
“other than for disabled users, who have no alternative, using eye
gaze for practical pointing does not appear to be very promising”
(Zhai et al., 1999). Kumar et al. agree that “overloading the visual
channel for a motor control task is undesirable” (Kumar et al.,
2007). In line with these arguments, our work avoids forcing the
user to consciously adopt unnatural gaze behavior for interaction
purposes and instead uses gaze movements that naturally accom-
pany manipulation tasks for prediction.

In non-command interfaces, the computer system passively and
continuously observes the user in real-time and provides appropriate
responses. In order to provide satisfying and natural responses, the
computer system must be able to infer user's intentions from his/her
spontaneous natural behaviors. An intention can be, for instance,
moving a window, scrolling a piece of text or maximizing an image
(Bednarik et al., 2012). Studies (Bader et al., 2009; Iqbal and Bailey,

2004; Yu and Ballard, 2002a; Hayhoe and Ballard, 2005; Bulling et al.,
2011; Campbell and Maglio, 2001) provide qualitative observations
and quantitative evidence suggesting that well-structured tasks have
unique eye movement signatures. However, the majority of the
related work on non-command interfaces focuses solely on post-
hoc analysis of eye movements collected during natural interaction.
Only a few researchers have made considerable attempts at inter-
preting user behavior for online task prediction. Therefore, non-
command interfaces can be grouped under two subcategories: task
analyzers and task predictors. Both categories can be further divided
as daily task analyzer/predictors and virtual task analyzer/predictors
depending on the nature of tasks taken into consideration. Daily
tasks such as sandwich making and stapling a letter are ordinary
activities in everyday settings (Land and Hayhoe, 2001; Yi and
Ballard, 2009; Yu and Ballard, 2002a, 2002b; Fathi et al., 2012 )
whereas virtual tasks such as reading an electronic document or
manipulating a virtual object involve the use of a computer system
(Alamargot et al., 2006; Gesierich et al., 2008; Campbell and Maglio,
2001; Bader et al., 2009; Bednarik et al., 2012). We focus on pen-
based tablet devices; therefore, we are interested in analyzing and
predicting the range of virtual interaction tasks commonly per-
formed on tablet devices. However, for completeness sake, our
literature review covers daily tasks as well. In the following

Fig. 2. Flow diagram visualizing our overall approach to gaze-based prediction of virtual interaction tasks. The figure on the left illustrates how we build our system, and the
one on the right shows how our system works in practice.
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subsections we provide a review of the related work that fall under
each category. A more comprehensive summary of related work can
be found in Appendix A.

2.1. Daily task analyzers

Daily task analyzers focus on analyzing various characteristics
of eye movements while users perform daily tasks. Land and
Hayhoe (2001) investigate the relationships between eye and hand
movements in food preparation tasks such as brewing tea and
fixing a sandwich. Their results are largely composed of plots
displaying how body, eye and hand movements change in time
and the authors point out that the control of eye movements is
primarily directed at the ongoing motor actions. Yi and Ballard
(2009) also focus on the sandwich making task; however, they
take a more probabilistic approach. The authors manually segment
the task into subtasks such as locating the bread, spreading jelly
on the bread etc., and then use a dynamic Bayesian network (DBN)
to model the task. However, the authors do not assess the good-
ness of their predictions and only provide graphs visualizing the
real and inferred timings of the subtasks. Lastly, Hayhoe and
Ballard (2005) present a review of approaches that analyze eye
movements in everyday visually guided behaviors, however these
do not interpret user behavior for online task prediction.

2.2. Virtual task analyzers

Virtual task analyzers focus on analyzing various characteristics
of eye movements for tasks that involve the use of a computer
system. Iqbal and Bailey (2004) study eye gaze patterns in four
different tasks: reading comprehension, mathematical reasoning,
search and object manipulation. The authors segment the virtual
interaction area into interface-specific areas of interest (AOI) and
qualitatively inspect the relationship between amount of time
spent on each AOI and task type. They show that the percentage of
time spent on each AOI varies across task categories. However,
they do not provide statistical analysis or a mechanism for
prediction. Alamargot et al. (2006) provide a detailed description
of the eye movement characteristics recorded during reading and
writing on a digital tablet. Gesierich et al. (2008) observe proactive
(i.e. anticipatory) eye movements in both action execution and
action observation during a two-user virtual block stacking task.
Our work differs from the listed virtual task analyzers in its
successful attempt at interpreting user behavior for online task
prediction.

2.3. Daily task predictors

Yu and Ballard (2002a), Yu and Ballard (2002b) use Hidden
Markov Models (HMM) to discriminate between the tasks of
unscrewing a jar, stapling a letter and pouring water. In addition
to features related to the eye, head and hand movements, the
authors also employ features related to scene objects being fixated
by the user during task execution. This substantially simplifies task
prediction as it practically reduces to discriminating between a jar,
a stapler and a carafe. Similarly, in more recent work, Fathi et al.
(2012) use Support Vector Machines to discriminate numerous
subtasks of a meal preparation task. The authors extract gaze-
related features and features from the fixated scene objects that
mainly describe their key visual properties. More specifically,
Yu and Ballard (2002a), Yu and Ballard (2002b) demonstrate that
the user most probably has an intention to staple a letter and not
unscrew a jar or pour water if the object of focus is a stapler.
However, it is certainly less clear whether the user intends to drag,
maximize, minimize, scroll or sketch on a virtual object; for
instance, an image, even if the object of focus is the image itself.

The ultimate aim of task predictors is not predicting the current
task in a certain context but doing so in a context-independent
way. All pieces of work focus on daily task prediction and utilize
context information. This is feasible in the context of daily tasks;
however, not as much so in the case of virtual tasks since the user
might be performing a variety of different tasks while focusing on
the same virtual object.

Bulling et al. (2009, 2011) present two closely related works.
The authors focus on classifying tasks in three domains: reading,
office activities and cognitive psychology (more specifically, visual
memory recall). The domain most related to our work is office
activities consisting of copying, reading, writing, watching a video
and browsing the Web. They report an average precision score of
76.1% using SVMs, which is comparably higher than scores
reported by related works that focus on gaze-based task predic-
tion. A more recent closely related work is by Ogaki et al. (2012).
They study the same indoor office activities as Bulling et al.
(2009, 2011), Bulling et al. (2009) and demonstrate that coupling
eye movements with ego-motion leads to better task classification
performance. Their work resembles our work in its use of multiple
modalities, however the features used in these studies depend
heavily on preset templates to track repetitive patterns of eye
movements and on constants for defining threshold levels, sliding
window sizes, etc. On the contrary, the highly generic features of
our current work eliminate the need for such possibly subject- and
interface-specific preprocessing steps. Moreover, they report a
comparably low average precision score of only 57%.

2.4. Virtual task predictors

Among the earliest examples of virtual task predictors is work
by Campbell and Maglio (2001). They use a wide range of eye
movement patterns in order to classify reading, skimming and
scanning tasks.

This was followed to a great extent by studies concentrating on
intention prediction, i.e. predicting whether the user wants to
interact with the system or not during natural interaction. For
instance, Bader et al. (2009) use a probabilistic model to predict
whether the user intends to select a virtual object or not with
80.7% average accuracy. Similarly, Bednarik et al. (2012) use SVMs
to predict whether the user intends to issue a command or not
with 76% average accuracy. Both prediction tasks are examples of
binary classification, which indicates that in both cases, baseline
accuracy score corresponding to the random classifier is 50%. This
cannot be compared to our case where the baseline accuracy score
is merely 20%. Hence, reported accuracy scores and classifier gains
(defined as the measurement of improvement over the random
classifier) should be interpreted in consideration of this fact.

To the best of our knowledge, only a few studies exist that take
intention prediction one step further and attempt multi-class
intention prediction of virtual tasks. The first notable example is
by Courtemanche et al. (2011) who claim their approach to activity
recognition to be the first one to incorporate eye movements. This
work utilizes eye movements discretized in terms of interface-
specific AOIs in addition to keystrokes and mouse clicks input by
the user during interaction. They use HMMs to predict which of
the three Google Analytics tasks (i.e. evaluating trends in a certain
week, evaluating new visits and evaluating overall traffic) the user
is currently performing with 51.3% average accuracy. The second
example is recent work by Steichen et al. (2013). Their domain is
information visualization with graphs including bar graphs and
radar graphs. Similarly, they rely on interface- and graph-specific
AOIs for feature extraction and Logistic Regression to predict
which of the five information visualization tasks (retrieve value,
filter, compute derived value, find extremum and sort) the user is
currently performing with 63.32% average accuracy.
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The superiority of our work over these two studies is threefold.
First, both of these studies are interface-dependent since they
analyze eye movements with respect to predefined AOIs. In contrast,
our work avoids possibly subject- and interface-specific preproces-
sing steps common in gaze-based systems. Second, possible applica-
tion areas of both of these studies are highly specific and limited
since the corresponding task prediction models focus on Google
Analytics tasks and graph-based information visualization tasks,
respectively. On the contrary, our work can be applied in all areas
that utilize basic interaction tasks like dragging, resizing and scrol-
ling. Accordingly, the application areas can range from simple
interfaces to more complicated document or image editing software.
Third, our prediction system is comparably more accurate, which
makes it a better candidate for practical use.

3. Multimodal data collection

We interpret pen and eye gaze input within a machine learning
framework. This primarily requires large amounts of data for

training classifiers. We collect data in a controlled setup where
the users are asked to carry out a number of pen-based virtual
interaction tasks.

3.1. Physical setup

To create a database composed of synchronized sketch and
gaze data, we use a tablet and a Tobii X120 stand-alone eye tracker
for the sketch and gaze modalities, respectively. The eye tracker
needs to be calibrated once for each user. The calibration step is
brief, and it is posed as an “attention test” to conceal any hints of
eye tracking from the user. Tobii X120 operates with a data rate of
120 Hz, tracking accuracy of 0.51 and drift of less than 0.31. The
tracker allows free head movement inside a virtual box with
dimensions 30�22�30 cm.

The physical setup for data collection is depicted in Fig. 3.
Note that the drawing surface and the display are separated.
In particular, the drawing surface (i.e. a tablet) is placed below
the eye tracker and the eye tracker is placed below a monitor. This
physical configuration allows us to collect pen input given the
technical limitations of the Tobii X120 eye tracker. More specifi-
cally, the general setup guidelines for the eye tracker require
placing it below the interaction screen. However, placing the eye
tracker below the tablet inevitably leads to user's arm blocking
the eye tracker's field of operation. To overcome this problem,
the drawing surface and the display are separated in our setup.
To facilitate hand–eye coordination during interaction, we render
a pen-shaped visual cursor on the display indicating the position
of the user's pen on the tablet.

3.2. Data collection tasks

Our data collection process is designed to include frequently
employed pen-based virtual interaction tasks. These tasks,
depicted in Fig. 4, are: drag, maximize, minimize, scroll and free-
form drawing. Typical pen-based interaction consists of stylized
and non-stylized pen inputs. Stylized pen inputs consist of symbols
and gestures which have characteristic visual appearances (Fig. 5).
Hence, they can be classified with conventional image-based
recognition algorithms. On the other hand, non-stylized pen
inputs lack a characteristic visual appearance, and appearance
alone does not carry sufficient information for classification
purposes. Therefore, in order to test out our system's prediction

Fig. 3. Physical setup for multimodal data collection. Input and display are separated
resulting in an indirect input configuration (Forlines and Balakrishnan, 2008).

Fig. 4. Pen-based virtual interaction tasks included in our research. Starting and ending regions of desired pen motion in each task are visualized with dotted circles. In the
rest of the article, the center points of these regions will be referred to as anchor points. Direction of the desired pen motion in each task is visualized with a dotted arrow
connecting the starting and ending regions. It is important to note that the dotted visualizations only serve as a reference within this paper and they are not shown to the
user during data collection. (a) Drag. (b) Maximize. (c) Minimize. (d) Scroll. (e) Free-Form Drawing. (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)
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power in a more challenging setting, we selected tasks that yield
non-stylized pen input. In particular, for each task the stylus has an
approximate starting point and an approximate ending point. In
order to complete each task, the user needs to make a movement
that starts near the starting point and ends near the ending point.
Pen input corresponding to these tasks do not have characteristic
visual appearances and do not lend themselves well to conven-
tional image-based recognition algorithms. Instructions given to
the users for each task are summarized in Table 1.1

In addition to being frequently employed, these tasks also have
the following properties in common:

� Each task can be carried out using a tablet and a stylus.
� Each task necessitates continued visual attention for planning

and guiding the hand/eye movements. Thus during each task,
user's eyes are expected to remain on the display device.

� Tasks last roughly the same amount of time.

The Free-form drawing task differs from the remaining tasks in a
special way. Unlike the other pen-based virtual interaction tasks,
this task is included in our study in an attempt to model and avoid
unsolicited task activation. More specifically, if our prediction
system is to be employed in a proactive user interface, the ability
to distinguish between the intention to sketch and the intention to
interact becomes vital. Accordingly, the free-form drawing task is
included in our study to distinguish pen movements that are
intended to activate the proactive user interface for task execution.
Otherwise, the user would find that all pen movements (intended
or not) activate a new task execution.

3.3. Data collection interface

To collect multimodal data for the mentioned tasks, we
designed and implemented a custom application. We collected
sketch data using the Microsoft Managed INK Collection API (Pen
API) and INK Data Management API (Ink API). These APIs capture
pen coordinates online, and save digital ink packets captured
between pen-down and pen-up events as strokes. We collected
gaze data using the Tobii Analytics Software Development Kit

(SDK). The collected gaze data is composed of gaze points, each
represented as an array of tuples consisting of local UNIX time-
stamp, remote UNIX timestamp, validity code, horizontal location
and vertical location information sampled at 120 Hz. Validity code,
horizontal location and vertical location information are obtained
for the left and right eyes individually.

Our user interface has the following properties:

� Sketch and gaze data are collected in a time-synchronized
fashion.

� A gaze tracking status bar visualizes whether the eye tracker is
able to find both eyes. Users can monitor and adjust their
posture based on the gaze tracking status bar. The bar stays
green as long as the eye tracker is functioning properly, but
turns red if the eye tracker loses the eyes. Gaze data packets
collected while the status bar is red are marked as invalid by
the eye tracker. The status bar is disguised under the name of a
posture check indicator in an attempt to avoid any hints of eye
tracking.

� At the beginning of each task, prerecorded non-distracting (in
terms of avoiding unsolicited gaze behavior) audio instructions
are delivered via headphones.

� After the completion of each task, the percentage of valid gaze
data is calculated to assure that at least 80% of the collected
gaze data is valid. In cases where fewer than 80% of the gaze
packets are valid, the current task is automatically repeated and
the user is warned via an audio message instructing him/her to
assume a correct posture and maintain an appropriate distance
to the monitor.

When users execute a task, positions of the pen-down and pen-
up events respectively define the starting and ending points of the
task. To insure that starting and ending points of a task do not act
as confounding variables in our data collection process, the tasks
were designed to have coincident starting/ending points (Fig. 4).

3.4. Database

We refer to each run of a certain task at a certain scale as a task
instance. Our multimodal database consists of 1500 task instances
collected from 10 participants (6 males, 4 females) over 10
randomized repeats of 5 tasks across 3 scales. The participants
were recruited from undergraduate and graduate students of Koç
University's Faculty of Engineering on a voluntary basis.

Multimodal data was collected across three different scales to
test our system in terms of scale-invariance. The scale variable
determines the length of the path connecting the two anchor
points present in each task (Fig. 4). These three scales will be
referred to as large, medium and small, respectively. Lengths of the
paths corresponding to each scale were set in light of facts about
human vision. The spatial field of vision is functionally divided
into three regions, foveal, para-foveal and peripheral. As summar-
ized in Table 2, each region has distinct characteristics with
respect to acuity limitations; therefore, lengths of the paths were

Fig. 5. Common editing gestures (Rubine, 1991) serve as examples of stylized pen
input. Each gesture has an easily distinguishable characteristic visual appearance.

Table 1
Instructions given to the users for each task during data collection.

Task Instruction

Drag Drag the blue square onto the center of the green circle
Maximize Increase the size of the blue square to match the size of

the green square
Minimize Decrease the size of the blue square to match the size

of the green square
Scroll Pull the chain until the color of the last link is clearly

visible
Free-form drawing Connect the battery and the resistor with a wire

Table 2
Different regions of human spatial field of vision (Rayner, 2009).

Type of region Foveal Para-foveal Peripheral

Limit (in degrees) o2 2–10 410
Limit (in cm)a o2:44 2.44–12.25 412:25

a Calculated based on acuity limit of each type of region in degrees and distance
of the user to the monitor which is 70 cm in our setup.

1 Note that the instructions for the drag, maximize and minimize tasks contain
color information which will not show in a B/W copy of Fig. 4. For these tasks, the
object to be manipulated (dragged/maximized/minimized) is the one on the left
side of each screen.
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set to 21 cm, 10.5 cm and 5.25 cm for the large, medium and small
scales, respectively.

At the beginning of each data collection process, users were
presented with 10 practice runs consisting of one run in large scale
and one run in small scale for each of the 5 tasks.

Sketch data timestamps of two task instances were missing;
thus, those instances were omitted from the database. In addition,
invalid gaze data was filtered out using the validity codes.2

4. Novel gaze-based feature representation

Our system utilizes only two kinds of features for gaze-based
task prediction: Instantaneous Distance Between Sketch and Gaze
Positions and Within-Cluster Variance of Gaze Positions. The
strength of these features stems from the fact that they eliminate
the need for possibly subject- and interface-specific preprocessing
steps common in gaze-based systems. Some examples of these
common error-prone preprocessing steps include segmentation of
gaze data into fixations and saccades and manual specification of
regions of interest. Below, we describe each feature in detail, as
well as the rationale behind how they are expected to aid task
identification.

4.1. Feature 1: instantaneous distance between sketch and gaze
positions

Let Gt〈x; y〉 be the x and y positions of the gaze on the screen
at time t during the execution of a particular task. Let Pt〈x; y〉
represent the position of the tip of the stylus at time t. We argue
that the distance between these points Dt ¼ jGt�Pt j evolves in a
strongly task-dependent fashion throughout the completion of a
task instance. In other words, distance curves Dt computed for task
instances of the same type have similar rise/fall characteristics,
while those of different task types have quite different profiles.
Unfortunately, even for the same task, the distance curves will
evolve at different rates, hence they will not be identical. Assum-
ing that we could compute representative characteristic curves for
all task types, we could then compare the distance curve of an
unknown task instance to these characteristic curves, and use the
degree of matching as a useful feature for task identification.
Below we describe the rationale behind the instantaneous dis-
tance feature, and suggest a method for computing task-specific
characteristic curves.

4.1.1. The rationale
Hand–eye coordination behavior inherent in virtual interaction

tasks changes over the course of a task instance as a function of
changes in user sub-tasks (Hayhoe and Ballard, 2005; Fathi et al.,
2012; Johansson et al., 2001; Ballard et al., 1992). The multiple
steps of each task can be thought of as consecutive sub-tasks and
each sub-task entails a different type of hand–eye coordination
behavior. The rationale behind the first feature of our novel gaze-
based feature representation is based on this observation and
attempts to capture the goal-dependent dynamic aspects of
human hand–eye coordination behavior through the evolution of
the distance between instantaneous gaze and sketch positions
calculated over a task instance.

Consider the task in Fig. 4a. In a typical instance of this task, the
user is instructed to drag a source object (the blue square) onto a
target object (the green circle). The sub-tasks of this task are

(1) positioning the pen on the source object, (2) determining the
position of the target object and (3) dragging the source object
towards the target object. We argue that the dynamic aspects of
human hand–eye coordination behavior are reflected in the
distance values between instantaneous gaze and sketch positions
calculated over time. Figs. 6 and 7 generated from the same
sample task instance support our argument. Fig. 6 gives a visua-
lization of the user's sketch data along with a number of sketch
and gaze data samples. Sketch and gaze data points collected at
identical time instances are connected with dotted lines. The
length of a connection line denotes the value of the sketch–gaze
distance feature for the corresponding instance. Fig. 7 demon-
strates how the value of this feature changes over time. In this
figure, the sketch–gaze distance feature is plotted for the same
user and same task, over three different scales. Peaks of the plots
could conceivably mark the second sub-task during which the
user, after having positioned the pen on the source object, is now
gazing at the target object. Note that sketch–gaze distance feature
expresses similar characteristics across different scales; thus our
approach and our novel feature can be generalized and applied to
data collected across different scales.

Inspection of the sketch–gaze distance curves for the drag task
reveals that the rapid rise and gradual decline behavior is typical
of all instances of the drag task. Similarly, the distance curves for
the other tasks also display task-specific characteristic rise and fall
behaviors. We compute distinct sketch–gaze distance curves for

Fig. 6. Visualization of the user's sketch data (solid line) along with a number of
sketch (circles) and gaze (squares) data samples. Dotted lines connect the
instantaneous sketch and gaze sample pairs.
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Fig. 7. Visualization of the changes in the value of sketch–gaze distance feature as a
function of time.

2 Validity code information is an estimate of how certain the eye tracker is able
to correctly identify both eyes. Validity codes can take on a set of specific values.
The Tobii SDK Developer's Guide recommends all samples with validity codes 2 or
higher to be discarded.
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each virtual interaction task using sketch–gaze distance curves of
all task instances. These task-specific sketch–gaze distance curves
will be referred to as characteristic curves.

4.1.2. Characteristic curve extraction
Fig. 8a illustrates the sketch–gaze distance curves corresponding

to 10 repeated task instances of a user for the drag task in the large
scale. These curves have been filtered by a symmetric Gaussian low-
pass filter of size 11�1 and σ ¼ 5. It is evident that the user naturally
spent different amounts of time to complete each task instance. In
order to overcome the discrepancy in task completion times, sketch–
gaze distance curves are normalized with respect to a standard time
range as depicted in Fig. 8b. However, even after the normalization
procedure, the sketch–gaze distance curves are still not sufficiently
aligned. This indicates that although users accomplish similar sub-
tasks to complete each task, the completion time and speed of these
sub-tasks vary across task instances, and even within a user.

To align sketch–gaze distance curves that are similar in shape
but evolve at different rates, we use dynamic time warping (Sakoe
and Chiba, 1978). Dynamic time warping is a sequence alignment
method often used in the time series classification domain to
measure the similarity between two sequences independent of
non-linear variations in the time dimension. We use it both for
computing the similarity of two given curves and for finding an

optimal alignment between them. Fig. 9 demonstrates the align-
ment of two curves using dynamic time warping.3 Alternative
sequence alignment methods include, but are not limited to,
functional data analysis (Ramsay, 2006), curve alignment by
moments (James, 2007) and curve synchronization based on
structural characteristics (Kneip and Gasser, 1992).

We build scale- and task-specific characteristic curves as
follows:

1. For each task instance, we obtain the instantaneous sketch–
gaze distance curve Di.

2. We smooth out all Di by a rotationally symmetric Gaussian low-
pass filter of size 11�1 and σ ¼ 5.

3. We form a similarity matrix S based on the similarity values
corresponding to all possible pair combinations of sketch–gaze
distance curves. Similarity values are computed using the
dynamic time warping algorithm.

4. We create a hierarchical cluster tree from the similarity matrix.
Clusters are computed using the unweighted pair group
method with arithmetic mean (UPGMA) based on the
Euclidean distance metric.
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Fig. 8. Sketch–gaze distance curves corresponding to 10 repeated task instances of a user each drawn in a distinguishing color. (a) Original sketch–gaze distance curves.
(b) Normalized sketch–gaze distance curves. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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Fig. 9. Sketch–gaze distance curves corresponding to two task instances of a user. We use dynamic time warping for computing an optimal alignment between two given
curves by warping each curve with respect to the other one. (a) Original sketch–gaze distance curves. (b) Warped sketch–gaze distance curves.

3 We use an open-source dynamic time warping library for MATLAB (Felty,
2004).
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5. On each cluster, an algorithm we call weighted hierarchical time
warping is applied. We developed this algorithm for computing
the characteristic curve that best represents any given cluster of
curves. The weight of an input curve depends on the number of
leaves below the node corresponding to the input curve in the
hierarchical cluster dendrogram. This way, all members of a
cluster contribute equally to the resulting characteristic curve.
The details of this algorithm are described in Fig. 10.

6. We take the final weighted hierarchical warping result of the
cluster with the maximum number of elements as the char-
acteristic curve of the respective task and scale. If there are
multiple clusters containing at least 10 task instances, then
each of these clusters contributes a characteristic curve to the
set of characteristic curves for the respective task and scale.

Algorithm 1. Algorithm for building the instantaneous sketch–
gaze distance curves.

Input: Gaze data Gi and sketch data Pi for all task instances of
the input task and scale

Output: Instantaneous sketch–gaze distance curves D0
i

1: for all Task instances i do
2: Di’jGi�Pij
3: D0

i’smoothðDiÞ
4: end for

Algorithm 2. Algorithm for forming the similarity matrix.

Input: D0
i for all task instances of the input task and scale

Output: Similarity matrix S
1: for all Task instance pairs i; j do
2: Sij’dtw_distanceðD0

i;D
0
jÞ◃ dtw_distance method computes

the similarity of two given curves.
3: end for

Algorithm 3. Algorithm for extracting the characteristic curve(s).

Input: Similarity matrix S of the input task and scale
Output: An array of characteristic curve(s)

1: clusterArray’linkageðSÞ
2: for all clusters Ci in clusterArray with at least 10 task

instances do

3: initialize wj’1 for all members j of cluster Ci
4: while Ci contains multiple curves
5: find the most similar curve pair (first, second) in the

cluster
6: warp the first curve with respect to the second curve

to get firstWarped
7: warp the second curve with respect to the first curve

to get secondWarped
8: firstWeight’ wfirst

wfirst þweightsecond
and

secondWeight’ wsecond
wfirst þwsecond

9: take a weighted average of the warped curves to get
newCurve

10: wnewCurve’wfirstþwsecond

11: replace the warped curves in the cluster with the
newly computed curve

12: end while
13: add the final newCurve to the array of characteristic

curves
14: end for

Using this algorithm, we obtain a characteristic curve for each
task and scale as depicted in Fig. 11 for the large scale. Given a
sketch–gaze distance curve, we construct its feature vector by
measuring its similarity to each of these characteristic curves. This
vector corresponds to the first feature of our novel gaze-based
feature representation. Again, similarity values are calculated
using dynamic time warping. Although not shown in this figure,
some tasks may have multiple characteristic curves. This happens
if there exist multiple strategies that users follow to complete a
specific task. Therefore, the length of this feature vector is not
constant and depends on the total number of characteristic curves.

A qualitative investigation of the characteristic curves brings up
interesting observations on stylus-gaze coordination behavior.
In line with our initial argument, this behavior is observed to be
task-dependent. Furthermore, the characteristic curves have easily
interpretable shapes. For instance, in the scroll task, the hand
keeps pulling the chain while the eyes are busy attending to the
newly appearing information on the display. Therefore, one would
expect the distance between the hand and the eyes to increase
constantly; our findings agree with this expectation (Fig. 11).

4.2. Feature 2: within-cluster variance of gaze positions

As we demonstrate in the next subsection, eye gaze positions
along the path of different virtual interaction tasks exhibit differ-
ent clustering behaviors. Hence, a measure of how the gaze points
are clustered and spread out along the trajectory of the task carries
discriminative information for task identification. This is what we
attempt to capture with the within-cluster variance feature.

4.2.1. The rationale
Humans employ two different modes of voluntary gaze-

shifting mechanism to orient the visual axis. These modes are
referred to as saccadic and smooth pursuit eye movements. It is
widely accepted that “saccades are primarily directed toward
stationary targets whereas smooth pursuit is elicited to track
moving targets” (de Xivry and Lefèvre, 2007). Typical virtual
interaction tasks contain both stationary and moving targets.
A user's attention can be dominantly directed towards targets of
either type depending on the intended task.

Our experiments show that in a typical drag task, saccades
are more common and the user's attention is drawn from
one stationary target which is the initial position of the object

Fig. 10. Weighted hierarchical time warping algorithm. According to this algorithm,
the curve labeled C1 is created by warping the curves with indices 16 and 22
whereas the curve labeled C2 is created by warping the curve with index 13 and the
previously created C1 curve. Here, C1¼ 1

2 � dtwð16;22Þþ1
2 � dtwð22;16Þ whereas

C2¼ 1
3 � dtwð13;C1Þþ2

3 � dtwðC1;13Þ. Note that dtw(source, target) is the dynamic
time warping function that warps the source curve with respect to the target curve
and returns the warped source curve. The weights determine how much the
warped source curve contributes to the final warping result.
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currently being dragged to the other stationary target which is the
intended position of the object (Fig. 12a). Conversely during free-
form drawing (Fig. 12b), smooth pursuit is more common and the
user's attention is drawn to the moving target (the newly appear-
ing ink). In saccades, gaze points accumulate around the stationary
targets whereas in smooth pursuit, gaze points scatter along the
pursuit path. The second feature of our novel gaze-based feature
representation is based on these observations, and hence attempts
to quantify how the eye gaze data is structured in terms of
saccades and fixations.

4.2.2. Quantifying the distribution of saccades and fixations
We quantify the distribution of saccades and fixations by

measuring the mean within-cluster variance of clustered gaze
points for each task instance. Clustering is done via MATLAB's
k-means clustering algorithm and repeated three times for differ-
ent k values as k¼ 1;2;3. Thus, the length of this feature vector is
constant and equal to 3. We do not use higher orders of k since
gaze packets aimed at the source and target objects respectively
form the first and second clusters while the remaining gaze
packets form the third cluster.

5. Intention prediction and evaluation

In this section, we evaluate the effectiveness of the features
introduced above in predicting virtual interaction tasks. During
evaluation, we focus on several aspects, including the prediction
accuracy and scale-invariance. In addition, we run feature selection
tests to evaluate the relevance and redundancy of the features
introduced above. We also compare the prediction power of our novel
gaze-based feature representation to that of commonly utilized and
well-established sketch-based feature representations in the literature.

As mentioned earlier in Section 3, we record participants' eye gaze
as well as the pen trajectory during the execution of each task
instance. A subset of sketch data from our database is shown in
Fig. 13. As seen in Fig. 13, even though the individual pen trajectories
for our tasks do not appear to be as stylized as those in Fig. 5, it is still
conceivable that pen trajectories alone may suffice for accurate task
prediction. To this end, we experimented with a number of image-
based approaches to extract features from the collected sketch data.
These feature representations, IDM Features (Ouyang and Davis, 2009)
and Zernike Moments (Khotanzad and Hong, 1990), are shown to
work well for hand-drawn sketch data by Tümen et al. (2010). The
authors further demonstrate that to achieve good recognition accura-
cies with these feature representations, good feature extraction
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Fig. 11. Characteristic curves obtained from sketch–gaze distance curves of each task in large scale.
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Fig. 12. Gaze data corresponding to 10 repeated task instances of a user. (a) Gaze data for the drag task. Saccadic eye movements result in gaze point clusters with low
within-cluster variance. (b) Gaze data for the free-form drawing task. Smooth pursuit eye movements result in gaze point clusters with high within-cluster variance.
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parameters must be selected. IDM Features have three free feature
extraction parameters as k (kernel size), σ(smoothing factor) and r
(resampling parameter). Zernike Moments have one free parameter,
which is the order of the Zernike moment o. We set the parameters of
the evaluated sketch-based feature representations in accordance with
the optimum values reported in Tümen et al. (2010). For reproduci-
bility, our parameter settings are listed in Table 3.

All accuracy tests were done using the LIBSVM (Chang and Lin,
2011) implementation of Support Vector Machines. The accuracies
are measured in line with the standard three-step machine
learning pipeline, where we first extract feature vectors from a
set of data samples, then train classifier models using these feature
vectors, and finally measure accuracies using unseen data.

1. We partition the input data into 5 disjoint folds, chosen
randomly but with roughly equal size. Out of these 5 folds,
4 are reserved for training and validating the model whereas
the remaining fold is reserved for testing the model.

2. We extract feature vectors from the training data, and normal-
ize them by standardization.

3. We train a model using the Gaussian radial basis function (RBF)
kernel. We estimate the hyper-parameters of our model using
grid search with 5-fold cross-validation.

4. We evaluate the resulting prediction model on the testing data
to obtain accuracy.

5. Steps 2–4 are repeated for each random split in a round-robin
fashion such that each of the 5 folds is used exactly once for
testing.

6. The mean accuracy for the random splits is reported.

5.1. Accuracy tests

Our accuracy tests fall under two categories: The first set of
tests evaluates gaze-based and sketch-based feature representa-
tions individually, and second set evaluates their combinations.
The accuracy tests are carried out and reported for the large,
medium and small scales, as well as for the all scales case, which
corresponds to the entire database.

Collectively, the results of the individual tests suggest that
feature representation has an effect on prediction accuracy. Spe-
cifically, our results suggest that the gaze-based feature represen-
tation is significantly better in capturing the richness and
complexity of our user input when compared to various sketch-
based feature representations that have been shown to work well
for hand-drawn sketch data. On the other hand, results of
the combined tests indicate that combining gaze-based and
sketch-based feature representations may yield higher accuracy

Fig. 13. Sketch data corresponding to a user's 5 repeated task instances for 5 tasks. Pen trajectories for our tasks serve as an example for non-stylized pen input that do not
have easily distinguishable characteristic visual appearance.

Table 3
Parameter settings for the sketch-based feature representations.

Feature representation Parameter settings

IDM features k¼25, σ¼3 and r¼150
Zernike moments o¼12
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scores depending on the choice of sketch-based feature represen-
tation and the combination technique.

5.1.1. Accuracy tests for evaluating the feature representations
individually

Fig. 14 shows the mean accuracies for individual feature repre-
sentations. We conducted a two-way ANOVA to examine the effect
of feature representation and scale on prediction accuracy. ANOVA
revealed a main effect of feature representation on prediction
accuracy across the Gaze-Based Features (78.7673.84), IDM Features
(60.4676.86) and Zernike Moments (38.7374.59) conditions at the
po0:05 level, ½Fð2;48Þ ¼ 292:924; po0:001�. Post-hoc comparisons
using the Tukey HSD test indicated that the mean score for the Gaze-
Based Features condition was significantly higher than the IDM
Features condition (po0:001) and the Zernike Moments condition
(po0:001). In addition, the mean score for the IDM Features
condition was found to be significantly higher than the Zernike
Moments condition (po0:001).

There was no main effect of scale on prediction accuracy across
the large (58.37718.32), medium (60.82718.04), small (59.047
15.88) and all scales (59.03718.53) conditions at the po0:05 level,
½Fð3;48Þ ¼ 0:602;p¼ 0:617�. This indicates that there is not enough
evidence to show that our prediction system has a significantly
higher/lower accuracy score for any particular scale irrespective of
feature representation. Furthermore, there was no significant inter-
action between feature representation and scale, ½Fð6;48Þ ¼
1:268; p¼ 0:290�. In other words, we can infer that there is not
enough evidence to show that a particular feature representation
performs significantly better or worse under scale variations. Fig. 15
provides a graphical illustration of the interactions.

5.1.2. Accuracy tests for evaluating combinations of feature
representations

The individual accuracy tests focus on the performance of
individual feature representations. A natural follow-up to the pre-
vious experiments is to explore whether gaze-based and sketch-
based feature representations can be combined to increase prediction
accuracy. There are two common techniques for information fusion,
namely classifier-level fusion and feature-level fusion. Mean accuracy
values computed for each scale with all possible classifier-level fusion
and feature-level fusion combinations of the gaze-based and sketch-
based feature representations are shown in Fig. 16.

Classifier-Level Fusion: For classifier-level fusion, we train two
probabilistic SVM models – one with the gaze-based features and
another with either of the sketch-based features (IDM Features or

Zernike Moments). The output of each probabilistic SVM model is
a vector of size 5, each element of the vector representing the
probability estimate of the input sample being a member of the
five respective virtual task classes. We then use the outputs of
these two probabilistic SVM models to train a third multi-class
SVM model. The feature vector in this case is a vector of size 10
consisting of probability estimate values from the gaze-based and
sketch-based probabilistic SVM models, respectively.

Feature-Level Fusion: For feature-level fusion, feature vectors
corresponding to multiple feature representations are concate-
nated to construct a high-dimensional feature vector. Then, a
regular SVM model is trained with this feature vector.

Statistical analysis of the accuracy tests with the combination of
gaze-based and sketch-based feature representations imply the fol-
lowing results (For brevity, we take p¼0.05 unless otherwise noted.):

� Classifier-level fusion of Gaze-Based Features and IDM Features
(83.6674.28) gives the overall highest mean accuracy value
(see Fig. 17a).

Fig. 14. Mean accuracy scores for each feature representation and scale. Error bars
indicate 95% confidence interval.

Fig. 15. Two-way ANOVA results that examine the interaction of feature repre-
sentation and scale factors on prediction accuracy.

Fig. 16. Accuracy tests with the classifier-level fusion and feature-level fusion
techniques. Error bars indicate 95% confidence interval.
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� IDM Features give higher mean accuracy values than Zernike
Moments in both classifier- (83.6674.28 vs. 76.7274.16) and
feature-level fusion (76.4478.59 vs. 69.8975.16) cases (see
Fig. 17a).

� Classifier-level fusion (81.1575.01) yields higher mean accu-
racy values compared to feature-level fusion (71.1477.55) (see
Fig. 17b).

� Gaze-Based Features alone (i.e. no fusion) (78.7673.84) give
higher mean accuracy values compared to feature-level fusion
technique (71.1477.55) (see Fig. 17b).

5.2. Feature selection tests for evaluating the relevance and
redundancy of the feature representations

Our accuracy tests show that combining the Gaze-Based Features
and IDM Features by classifier-level fusion gives the overall highest
mean accuracy value. However, in practice, it might not be feasible to
extract hundreds of features in real-time. In that case, we can use
feature selection to obtain a faster and cost-effective predictor by
ranking the features based on a mutual information criterion and
selecting a feasibly smaller subset of the highly ranked features.
This subset is composed of the maximally relevant and minimally

redundant (i.e. the best performing) features selected among all
feature representations in consideration.

Feature selection tests were conducted within the Maximum
Relevance & Minimum Redundancy (mRMR) feature selection frame-
work (Peng et al., 2005). This framework allows us to select the k
maximally relevant and minimally redundant features from a total set
of K features where krK . In our case, respective lengths of feature
vectors generated by Gaze-Based Features, IDM Features and Zernike
Features are f 1 ¼ 13, f 2 ¼ 720 and f 3 ¼ 47. Therefore the total number
of features is K ¼ f 1þ f 2þ f 3 ¼ 780. Fig. 18 shows the percentage
of features contributed by each feature representation to the best
performing set of features. As seen here, Gaze-Based Features surpass
(or equal) both sketch-based feature representations in terms of the
percentage of contributed features for all values of k. All features
generated by the gaze-based feature representation make their way
into the best performing set of features by k¼49. At this point, only as
little as 6.28% of the total number of features are used. Therefore, in
cases where speed and cost are of concern, Gaze-Based Features offer
a better alternative to IDM Features and Zernike Features.

5.3. Scale-invariance tests

Practical usage of our prediction system may involve a range
of display devices and user interfaces with varying sizes and

Fig. 17. Summary of results for the combined accuracy tests. Error bars indicate 95% confidence interval. (a) Mean accuracy values for various combinations of feature
representations and information fusion techniques. (b) Mean accuracy values for the no fusion, classifier-level fusion and feature-level fusion cases. No fusion case
corresponds to using Gaze-Based Features alone.
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constraints. Robustness of a feature representation to variations in
scale is important if we want our prediction system to work
equally accurately despite these variations. Fig. 14 shows the mean
accuracies for individual feature representations in different
scales. We previously referred to this figure in Section 5.1 for our
accuracy tests, but we did not focus on the scale-invariance of our
task prediction system. As we substantiate in detail in the next
two subsections, our task prediction system is scale-invariant in all
Gaze-Based Features, IDM Features and Zernike Features cases.
The only exception is for pen and eye movements that are entirely
in the foveal area. In that case, prediction accuracy deteriorates by
a small, yet statistically significant amount for the gaze-based
feature representation. This is expected due to limitations of our
eye tracker in smaller scales in terms of tracking accuracy.

5.3.1. Scale-invariance tests with the gaze-based feature
representation

In order to compare the effect of scale on prediction accuracy
across the large (79.4073.85),medium (80.2072.79), small (74.477
2.66) and all scales (80.9572.89) conditions, we conducted a one-
way between subjects ANOVA with the gaze-based feature repre-
sentation. There was a significant effect of scale on prediction
accuracy at the po0:05 level for the four conditions ½Fð3;16Þ ¼
4:497; p¼ 0:018�. Post-hoc comparisons using the Tukey HSD test
indicate that the mean score for the small condition is significantly
lower than the all scales condition (p¼0.020) and the medium
condition (p¼0.043). However, there were no differences between
the all scales, large and medium conditions. More specifically,
p¼0.855 for all scales and large conditions, p¼0.980 for all scales
and medium conditions, and finally p¼0.976 for large and medium
conditions.

Collectively, these results suggest that length of the task
trajectory has an effect on prediction accuracy. Specifically, our
results indicate that when the range of pen and eye movements in
a task approaches the range of foveal human vision, prediction
accuracy deteriorates slightly. This is expected, because tracking
error is relatively worse for smaller scales. Wider ranges of pen
and eye movements do not appear to increase or decrease
prediction accuracy significantly. On the other hand, the most
realistic test condition corresponds to the all scales case since data
collected during natural interaction with a user interface will
typically consist of tasks across a variety scales. Prediction accu-
racy in fact peaks at the all scales case.

5.3.2. Scale-invariance tests with the sketch-based feature
representations

In order to compare the effect of scale on prediction accuracy
across the large (58.9870.85/36.7474.51), medium (61.027
12.90/41.2373.99), small (63.2775.35/39.3976.60) and all scales
(58.5773.20/37.5572.31) conditions, we conducted a one-way
between subjects ANOVA with IDM Features/Zernike Moments.
For both feature representations, there was no significant effect of
scale on prediction accuracy at the po0:05 level for the four
conditions, more specifically ½Fð3;16Þ ¼ 0:451; p¼ 0:720� for IDM
Features and ½Fð3;16Þ ¼ 0:942; p¼ 0:444� for Zernike Moments.

6. Future work and concluding remarks

We have proposed a gaze-based virtual task prediction system to
alleviate dependence on explicit mode switching in pen-based sys-
tems. Our system infers intended user actions by monitoring and
analyzing eye gaze movements that users naturally exhibit during
pen-based user interaction. More specifically, our system successfully
discriminates between frequently employed pen-based virtual manip-
ulation commands: drag, maximize, minimize and scroll. In addition,

our system differentiates between the intention to sketch and the
intention to issue a command. We believe that predicting the mode of
interaction will eventually allow us to build systems that save users
the trouble of mode switching during basic interaction tasks.

Our first contribution is a carefully compiled multimodal dataset
that consists of eye gaze and pen input collected from participants
completing various virtual interaction tasks. Our second contribution
is a novel gaze-based feature representation, which is rooted in our
understanding of human perception and gaze behavior. Our feature
representation is neither subject- nor interface-specific, and per-
forms better than common, well-established sketch recognition
feature representations in the literature. Our third contribution is a
novel gaze-based task prediction system based on this feature
representation that can generalize to variations in task type and
scale. The prediction results that we report are substantially better
than existing work in the literature that attempt multi-class intention
prediction as we do. Furthermore, we do not require defining
application and interface specific areas of interests.

In the light of promising findings reported in this paper, we
envision a number of immediate follow-ups to our work, as well as
long term research directions to explore. An immediate extension
might involve conducting experiments to see if our prediction
framework is equally suitable to other pointer-based user interfaces
rather than being limited to pen-based user interfaces only. Another
possible direction might involve conducting experiments to see if our
prediction system can successfully recognize other virtual tasks.

More substantial extensions might explore if variants of a particular
virtual task can be discriminated. For example, it is conceivable that a
minimization task where the target size is set in reference to another
virtual object may result in different stylus-gaze behavior compared to
the case without a reference object. This may involve building a finer
taxonomy of virtual tasks (e.g. drag with/without a target, minimize
with/without a reference, etc.), and extending the feature representa-
tion to handle these finer distinctions.4

Other long term follow-up work might explore the feasibility
of using our prediction system to build a proactive user interface.
We envision a proactive system capable of actively monitoring user's
gaze and pen input to detect the intention to switch modes in an
online setting, and act accordingly. We believe that we can success-
fully combine the idea of online prediction with uncertainty visua-
lization, gaze-contingent rendering (Duchowski et al., 2004) and
transparent layered user interfaces (Harrison et al., 1995) to build
online prediction systems that avoid the Midas touch problem.
Further experiments would be required to evaluate the usability
aspects of this setup, and compare it to the state of the art mode
switching mechanisms in the literature. Another extension might
explore the suitability of our feature representation scheme to aid the
recognition and segmentation of sketches (e.g. URL diagrams, circuit
diagrams). It is conceivable that conceptually different subtasks of
sketching – such as drawing objects, connectors, arrows or producing
handwritten annotations – may each have distinct gaze-stylus
interactions, which might be captured by extending feature repre-
sentations introduced in this paper.
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