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ABSTRACT 

Pen-based systems promise an intuitive and natural interaction 

paradigm for tablet PCs and stylus-enabled phones. However, 

typical pen-based interfaces require users to switch modes 

frequently in order to complete ordinary tasks. Mode switching is 

usually achieved through hard or soft modifier keys, buttons, and 

soft-menus. Frequent invocation of these auxiliary mode 

switching elements goes against the goal of intuitive, fluid, and 

natural interaction. In this paper, we present a gaze-based virtual 

task prediction system that has the potential to alleviate 

dependence on explicit mode switching in pen-based systems. In 

particular, we show that a range of virtual manipulation 

commands, that would otherwise require auxiliary mode 

switching elements, can be issued with an 80% success rate with 

the aid of users’ natural eye gaze behavior during pen-only 

interaction. 

Categories and Subject Descriptors 

H.1.2 [Models and Principles]: User/Machine Systems – Human 

information processing; H.5.2 [Information Interfaces and 

Presentation]: Input devices and strategies, Interaction styles, 

User-centered design 

General Terms 

Algorithms, Human Factors. 

Keywords 

Sketch-based interaction; multimodal interaction; predictive 

interfaces; gaze-based interfaces; feature representation; 

multimodal databases 

1. INTRODUCTION 
People commonly prefer pen and paper for brainstorming, for 

exchanging ideas with others, or simply for taking notes. This 

makes pen-based user interfaces a promising, more intuitive and 

accessible alternative to traditional graphical user interfaces. 

Using pen-based interfaces, users can produce and manipulate 

various kinds of free-form sketches (e.g. flowcharts, family trees, 

and electrical circuit diagrams). In the rest of the paper, 

commands issued by users to manipulate virtual objects during 

pen-based interaction will be referred to as virtual manipulation 

tasks. Some examples to frequently employed virtual 

manipulation tasks are dragging, maximizing, or minimizing 

individual sketch parts or scrolling the whole sketch canvas. 

During a typical interaction scenario, users repeatedly alternate 

between sketching and these manipulation tasks. However, prior 

to sketching or performing a manipulation task, users need to 

specify the intended mode of interaction via various auxiliary 

mode switching mechanisms (e.g. multi-finger gestures, 

context/pop-up menus, and external buttons). Even high-end 

graphics tablets preferred mainly by digital artists such as Wacom 

Cintiq 24HD [1] (Figure 1) lack purely pen-based interaction. For 

many tasks (e.g. scroll, zoom in/out, navigate back/forward), users 

are forced to use on-pen or on-tablet external buttons called 

“express keys”, “touch rings”, and “radial menus”. This 

requirement of switching back and forth between pen and button-

based input interrupts the interaction flow, and hence causes an 

overall disappointing experience. 

 

Figure 1. On-pen or on-tablet external buttons in pen-enabled 

graphics tablets serve as an example to pen-based devices with 

interaction paradigms that are not purely pen-based.  

In this paper, we present a novel multimodal approach to reduce 

reliance on explicit mode switching mechanisms in pen-based 

systems. Our current findings demonstrate that we can use gaze 

movements that naturally accompany pen-based user interaction 

to predict a user’s task-related intentions and goals. Based on this 

connection between gaze movements and pen-based interaction 

tasks, we envision a proactive system capable of actively 

monitoring user’s eye gaze and pen input to detect the intention to 

switch modes in an online setting, and act accordingly. We 

believe that the non-intrusive and transparent use of gaze modality 

for intention prediction alleviates dependence on explicit mode 

switching and takes us one step towards the goal of natural pen-

based interaction. There is no existing piece of work that uses eye 

gaze information as we do, thus the presented research and our 

approach is highly novel. 
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Briefly, our task prediction system is built as follows: Initially we 

collect sketch and gaze data during a number of pen-based 

interaction tasks and build a multimodal database (Section 2). We 

then extract novel gaze-based features from this database (Section 

3) and train a task prediction model using supervised machine 

learning techniques (Section 4). These steps are executed only 

once. Then, our system is ready for online prediction. 

2. MULTIMODAL DATA COLLECTION 
Our task prediction system interprets sketch and gaze input within 

a supervised machine learning framework. This primarily 

necessitates compiling a large database for training classifiers. For 

this purpose, we ask users to carry out a number of frequently 

employed pen-based virtual interaction tasks in a controlled setup 

(Table 1, left column). We give the following instructions to the 

users for each task: 

 Drag: Drag the blue square onto the center of the green 

circle. 

 Maximize: Increase the size of the blue square to match 

the size of the green square. 

 Minimize: Decrease the size of the blue square to match 

the size of the green square. 

 Scroll: Pull the chain until the color of the last link is 

clearly visible. 

 Free-form drawing: Connect the battery and the resistor 

with a wire. 

Our physical setup for collecting synchronized sketch and gaze 

data consists of a tablet and a Tobii X120 stand-alone eye tracker 

for the sketch and gaze modalities, respectively (Figure 2). We 

collected sketch and gaze data across three different scales, where 

the scale variable determines the length of the task trajectory. In 

light of facts about human vision, we set the lengths of the 

trajectories to 21 cm, 10.5 cm, and 5.25 cm for the large, medium, 

and small scales, respectively. In the rest of the paper, we refer to 

each run of a certain task at a certain scale as a task instance. Our 

multimodal database consists of 1500 task instances collected 

from 10 participants (6 males, 4 females) over 10 randomized 

repeats of 5 tasks across 3 scales.  

 

Figure 2. Physical setup used for multimodal data collection. 

3. NOVEL GAZE-BASED FEATURE 

REPRESENTATION 
Our framework employs just two kinds of features to predict pen-

based virtual interaction tasks using gaze information: 

Instantaneous Distance Between Sketch and Gaze Positions and 

Within-Cluster Variance of Gaze Positions. The advantage of our 

feature representation over related gaze-based feature 

representations lies in the fact that our features eradicate the need 

for possibly subject- and interface-specific preprocessing steps. 

Some of the commonly utilized error-prone preprocessing steps 

can be listed as segmentation of gaze data into fixations and 

saccades and manual specification of regions of interest. 

3.1 Feature 1: Instantaneous Distance 

Between Sketch and Gaze Positions 
Let Gt < x, y > represent the 2D position of the gaze on the 

screen at time t during the execution of a particular task (Figure 

3a). Similarly, let Pt < x, y > denote the 2D position of the stylus 

tip on the drawing device at time t (Figure 3a). Finally, let 

Dt = |Gt − Pt| be the distance between these points (Figure 3b). 

We argue that throughout the completion of a task instance, Dt 

evolves in a strongly task-dependent fashion. More specifically, if 

we compute the distance curves Dt for all task instances of a 

certain task type, we see that these curves have similar rise/fall 

characteristics. On the other hand, for different task types, the 

profiles of distance curves are quite different from each other. 

   

a) Visualization of the user’s sketch data (solid line) along 

with a number of 𝐆𝐭 < 𝐱, 𝐲 > samples (squares) and a 

number of 𝐏𝐭 < 𝐱, 𝐲 > samples (circles). In addition, 

instantaneous gaze and sketch samples are connected 

with dotted lines. 

 

b) Evolution of the distance curve 𝐃𝐭 over time. 

Figure 3. Plots visualizing the computation of the distance 

curve for a given task instance. 

t3 

t4 
t5 

t1 

t2 t1 

t2 

t4 

t5 
t3 



However, even for the same task type, the rates at which distance 

curves evolve are different; therefore these curves are not 

completely identical. In order to solve this problem, we need to 

align sketch-gaze distance curves that have similar rise/fall 

characteristics but evolve at different rates. To this end, we use 

dynamic time warping [2] and acquire a characteristic curve for 

each task type (Table 1, right column). In order to construct the 

feature vector of a given sketch-gaze distance curve, we measure 

its similarity to each of these characteristics curves and use the 

degree of matching as an informative feature for identifying tasks. 

The first feature of our novel gaze-based feature representation 

corresponds to this vector of similarity scores. 

Table 1. The column on the left shows pen-based virtual 

interaction tasks included in our research. The column on the 

right shows characteristic curves acquired from sketch-gaze 

distance curves of each task.  
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Free-form Drawing 

  

3.2 Feature 2: Within-Cluster Variance of 

Gaze Positions 
As shown in Figure 4, eye gaze points collected during the 

execution of a task exhibit different clustering behaviors for 

different virtual interaction tasks. Based on this observation, we 

measure how the gaze points are clustered and spread out along 

the task path and use this measure as a useful and discriminative 

feature for identifying tasks. 

In order to quantify the spatial distribution of gaze points along 

the path of a virtual interaction task, we measure the mean within-

cluster variance of clustered gaze points for each task instance. 

We cluster the gaze points using MATLAB’s k-means clustering 

algorithm and repeat this procedure three times for different 𝑘 
values as 𝑘 = 1, 2, 3. The second feature of our novel gaze-based 

feature representation corresponds to this vector of variance 

scores. 

 

a) Gaze data for the drag task – gaze points are clustered 

around the beginning and end points of the task trajectory 

resulting in gaze point clusters with low within-cluster 

variance.  

 

b) Gaze data for the free-form drawing task – gaze points are 

scattered along the pursuit path resulting in gaze point 

clusters with high within-cluster variance.  

Figure 4. Gaze data corresponding to 10 repeated task 

instances of a user. 

4. TASK PREDICTION AND 

EVALUATION 
We assess the efficacy of the features presented above in 

predicting pen-based virtual interaction tasks based on the 

prediction accuracy. We compare the prediction accuracy of our 

novel gaze-based feature representation to that of various sketch-

based feature representations that have been shown to work well 

for hand-drawn sketch data, namely IDM Features [3] and Zernike 

Moments [4]. In summary, our results suggest that the gaze-based 

feature representation is significantly better in capturing the 

richness and complexity of our user input when compared to 

commonly utilized and well-established sketch-based feature 

representations in the literature. 

For all accuracy tests, we used the LIBSVM [5] implementation 

of Support Vector Machines. We measured the accuracies in line 

with the standard three-step machine learning pipeline, where first 

feature vectors are extracted from a set of data samples (Figure 5), 

then classifiers are trained using these feature vectors, and finally 

accuracies are measured using unseen data. Figure 6 summarizes 

the mean accuracies for individual feature representations. 



 

Figure 5. Feature extraction in our framework. For each task instance, we compute a feature vector of size 8. This feature vector is 

then normalized by standardization. 

We conducted a two-way ANOVA to examine the effect of 

feature representation on prediction accuracy. ANOVA revealed a 

main effect of feature representation on prediction accuracy across 

the Gaze-Based Features, IDM Features, and Zernike Moments 

conditions at the 𝑝 < .05 level, [𝐹(2,12) = 294.767, 𝑝 < 0.001]. 
Post-hoc comparisons using the Tukey HSD test indicated that the 

mean score for the Gaze-Based Features condition (80.95 ±
2.89) was significantly higher than the IDM Features condition 

(58.57 ± 3.20, 𝑝 < 0.001) and the Zernike Moments condition 

(37.55 ± 2.31, 𝑝 < 0.001). 

  
Figure 6. Mean accuracy scores for each feature 

representation. Error bars indicate 95% confidence interval. 

 

5. RELATED WORK 
We have presented a novel gaze-based system for predicting 

virtual manipulation tasks during pen-based interaction. Campbell 

et al. [6]’s work is one of the first examples of virtual task 

predictors in the literature. They classify reading, skimming, and 

scanning tasks by using a wide range of eye movement patterns. 

This was largely followed by studies focusing on intention 

prediction, i.e. predicting whether the user intends to interact with 

the system or not during natural interaction. One example is by 

Bader et al. [7]. They use a probabilistic model to predict whether 

the user’s intends to select a virtual object or not with 80.7% 

mean accuracy. A similar work is by Bednarik et al. [8]. They use 

SVMs to predict whether the user intends to issue a command or 

not with 76% mean accuracy. In both cases, the prediction tasks 

are examples of binary classification, where the baseline random 

classifier has an accuracy of 50%. Contrastingly, in our case, the 

baseline random classifier has an accuracy of merely 20%. 

Therefore, this fact should be taken into consideration when 

interpreting the stated accuracy scores and relevant classifier gains 

(i.e. the measurement of improvement over the random classifier).  

To the best of our knowledge, there are only a small number of 

studies that take virtual task prediction one step further and aim at 

multi-class virtual task prediction instead of binary virtual task 

prediction. The work of Courtemanche et al. [9] is the first 

prominent example. The authors assert that their approach to 

activity recognition is the first one to incorporate eye movements. 

They discretize eye movements with respect to interface-specific 

AOIs and merge this information with information gained from 

keystrokes and mouse clicks input by the user during interaction. 

They use HMMs to predict which among the three Google 

Analytics tasks (i.e. evaluating trends in a certain week, 

evaluating new visits, or evaluating overall traffic) is currently 

being performed by the user with 51.3% mean accuracy. Recent 

work by Steichen et al. [10] comprises the second example. Their 

application area is graph-based information visualization and 

similarly they rely on interface- and graph-specific AOIs for 

feature extraction. They use Logistic Regression to predict which 

among the five information visualization tasks (i.e. retrieve value, 

filter, compute derived value, find extremum, or sort) is currently 

being performed by the user with 63.32% mean accuracy. 

The superiority of our work over these two closely related studies 

is threefold. First, both of these studies are interface-dependent 

since their feature extraction mechanisms involve analyzing eye 

movements with respect to predefined AOIs. On the contrary, our 

features eradicate the need for possibly subject- and interface-

specific preprocessing steps common in gaze-based systems. 

Second, both of these studies have highly specific and limited 

application areas, namely Google Analytics tasks and graph-based 

information visualization tasks. In contrast, our work can be 

applied in all areas that involve basic interaction tasks like 

dragging, resizing, and scrolling. Accordingly, the application 

areas of our task prediction system range from basic interfaces to 

more complex document or image editing software. Third, in 

terms of prediction accuracy, our task prediction system is 

80.95 

58.57

80.95 37.55 

20.00 



comparably more accurate, therefore making it a better candidate 

for practical use. 

6. CONTRIBUTIONS AND FUTURE 

WORK 
We have presented a virtual task prediction system that uses eye 

gaze movements to reduce dependency on explicit mode selection 

mechanisms in pen-based systems. Our task prediction system 

opens the way for more natural user interface paradigms where 

the role of the computer in supporting interaction is to “interpret 

user actions and [do] what it deems  appropriate” [11]. It is widely 

accepted that intelligent mode selection mechanisms that provide 

low cost access to different interface operations will dominate 

new user interface paradigms [12].  

We have three major contributions. First, we present a multi-

modal dataset that consists of eye-gaze and pen input collected 

from participants completing various virtual interaction tasks 

(e.g., dragging, scrolling, minimizing, maximizing etc.) using a 

pen-based interface. This carefully compiled database is the first 

of its kind, and we believe it will serve as a reference database for 

future research on the topic. Our second contribution is a novel 

gaze-based feature representation that is capable of capturing the 

differences observed in eye gaze behavior during various virtual 

interaction tasks. Our third contribution is a novel gaze-based task 

prediction system that is based on this feature representation.  

In the light of promising findings presented in this paper, an 

immediate follow-up to our work might involve conducting 

experiments to evaluate the robustness of our gaze-based feature 

representation to variations in scale. Another immediate extension 

might explore whether gaze-based and sketch-based feature 

representations can be combined by ways of feature-level or 

classifier-level fusion to increase prediction accuracy. Another 

possible direction might involve running feature selection tests to 

evaluate the relevance and redundancy of our gaze-based feature 

representation in comparison with the sketch-based feature 

representations in consideration. Lastly, additional feature 

selection tests can be run to assess the separate contributions of 

each of our two gaze-based features. 

A more substantial extension might involve building an 

exhaustive taxonomy of pen-based virtual interaction tasks. Using 

WordNet, we have already rounded up a list of approximately 200 

actions. We plan to categorize these actions with respect to user’s 

major high-level interaction goal into four groups as translation, 

manipulation, selection, and search. More experiments will be 

needed to verify whether our task prediction system or a similar 

system inspired by our current findings generalizes well to our 

task taxonomy. 

Another substantial extension might explore the feasibility of 

using our task prediction system to build a proactive user 

interface. When the user performs a pen action (demarcated by a 

pen-down and a pen-up event), the planned proactive user 

interface will actively detect and switch to the currently intended 

mode of interaction based on user’s synchronized pen trajectory 

and eye gaze information during pen-based interaction. Intention 

predictions will be carried out by the previously trained model and 

the features extracted from the corresponding sketch-gaze data of 

the user.  

The biggest challenge we face here is concerned with providing 

feedback. In line with the feedback principle of design [13], while 

the user is performing a pen action, the user interface must 

provide immediate and appropriate visual feedback about the 

effects of user’s actions and do this without causing any changes 

in user’s natural eye gaze behavior. However, the effects of user’s 

actions depend on user’s task-related intentions and goals, which 

are not known to the interface until the action is completed. 

Therefore, the interface must provide feedback about user’s 

intentions, from the start to the end of a pen action, without 

knowing user’s intentions.  

Further experiments will be required to evaluate the usability 

aspects of our proactive user interface, and compare it to the state 

of the art mode switching mechanisms in the literature. However, 

there are a number of major issues we need to address beforehand. 

First, we need to find a way to handle prediction errors. Although 

our task prediction system is fairly accurate (with a success rate of 

approximately 80%), inaccurate predictions are still possible. 

Therefore, further research is required to investigate approaches 

for detecting and recovering from system errors. Otherwise, users 

might confuse system errors with user-induced errors and diverge 

from natural gaze behavior in an effort to avoid them. In turn, this 

divergence will conceivably reduce the quality of the user’s 

experience with the interface as well as the accuracy of our task 

prediction system that assumes natural user behavior. Second 

issue we need to address concerns visualization. We envision a 

proactive user interface where effects of all possible actions are 

visualized simultaneously until a pen action is finalized and a 

prediction is made. However, showing the effects of irrelevant 

actions for the entire duration of a pen action can be cumbersome 

and lead to a heavily cluttered interface as the number of possible 

actions increases. In consequence, several questions remain to be 

addressed with respect to visualization of user’s task-related 

intentions and goals: Can we benefit from eager recognition 

techniques to avoid waiting until the end of a pen action to make a 

prediction? Can we use increasing levels of transparency to 

indicate decreasing likelihoods of a pen action being the intended 

pen action, i.e. highly probable actions become more emphasized 

as unlikely actions fade out? Formal user studies will be needed to 

obtain definitive answers to such questions. 
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