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Sketching is a natural mode of communication that can be used to support communication among

humans. Recently there has been a growing interest in sketch recognition technologies for facilitating

human–computer interaction in a variety of settings, including design, art, and teaching. Automatic

sketch recognition is a challenging problem due to the variability in hand drawings, the variation in the

order of strokes, and the similarity of symbol classes. In this paper, we focus on a more difficult task,

namely the task of classifying sketched symbols before they are fully completed. There are two main

challenges in recognizing partially drawn symbols. The first is deciding when a partial drawing contains

sufficient information for recognizing it unambiguously among other visually similar classes in the domain.

The second challenge is classifying the partial drawings correctly with this partial information. We describe

a sketch auto-completion framework that addresses these challenges by learning visual appearances of

partial drawings through semi-supervised clustering, followed by a supervised classification step that

determines object classes. Our evaluation results show that, despite the inherent ambiguity in classifying

partially drawn symbols, we achieve promising auto-completion accuracies for partial drawings. Further-

more, our results for full symbols match/surpass existing methods on full object recognition accuracies

reported in the literature. Finally, our design allows real-time symbol classification, making our system

applicable in real world applications.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Sketching is the freehand drawing of shapes and is a natural
modality for describing ideas. Sketching is of high utility, because
some phenomena can be explained much better using graphical
diagrams especially in the fields of education, engineering and design.
Sketch recognition refers to recognition of pre-defined symbols (e.g., a
resistor, transistor) or free-form drawings (e.g., an unconstrained
circuit drawing); in the latter case, the recognition task is generally
preceded by segmentation in order to locate individual symbols.
There are many approaches in the literature for sketched symbol
recognition. These include gesture-based approaches that treat the
input as a time-evolving trajectory [1–3], image-based approaches
that rely only on image statistics (e.g., intensities, edges) [4–6], or
geometry-based approaches that attempt to describe objects as
geometric primitives satisfying certain geometric and spatial con-
straints [7–9]. However, these methods mostly focus on recognizing
fully completed symbols. In contrast, here we focus on the recogni-
tion of partially drawn symbols using image-based features.

The term auto-completion refers to predicting the sketched
symbol before the drawing is completed, whenever possible. Auto-
ll rights reserved.
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completion during sketching is desirable since it eliminates the
need for the user to draw symbols in their entirety if they can be
recognized while they are partially drawn. It can thus be used
to increase the sketching throughput; to facilitate sketching by
offering possible alternatives to the user; and to reduce user-
originated errors by providing continuous feedback [10]. Despite
these advantages, providing continuous feedback might also dis-
tract the user if premature recognition results are displayed [11,4].

Auto-completion requires continuously monitoring the user’s
drawing and deciding whether the input given thus far can be
recognized unambiguously. In order to formalize the terms
ambiguity and confidence, consider the task of auto-completion
in SMS applications where the task is to try to guess the intended
word before it is completely typed, so as to increase typing
throughput. For this problem, suppose the language consists of
three words: cat, car, and apple. If the first input character is ‘a’,
then the word auto-completion system can infer the intended
word (apple) unambiguously. On the other hand, if the first
character is ‘c’ and no other information is available about the
language, the intended word is ambiguous (either ‘‘cat’’ or ‘‘car’’)
and a text-based auto-completion system can be only 50%
confident. However, suppose that the same auto-completion
system is allowed to make two guesses on the word the user
intends to type. Then, the system can guess the top two choices as
‘‘car’’ and ‘‘cat’’ with 100% confidence as no ambiguity is present.
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Fig. 1. Two sample sketched symbols from the COAD database.
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Sketch recognition is a difficult problem due to the variability
of user’s hand drawing, the variability in the stroke order and the
similarity of sketch classes to be recognized. Sketch recognition
with auto-completion is further complicated since the system is
faced with the problem of computing a confidence during the
recognition process. A hand-drawn symbol is ambiguous if it
appears as a sub-symbol of more than one symbol class. This is
often the case with partial symbols and occasionally even with
fully completed symbols.

Note that in the auto-completion framework, the system is not
told when the drawing of a symbol ends. This introduces addi-
tional difficulty in classifying full symbols as well. For example,
although the symbol shown in Fig. 1a is a fully completed symbol,
it appears as a sub-symbol of another symbol shown in Fig. 1b.
Hence, without knowing that the drawing of a symbol ended, a
symbol such as the one shown in Fig. 1a would be classified as
ambiguous. The issue of the ambiguity of fully completed symbols
is discussed further in Section 3.2.

Supplying the user with predictive feedback is an important
problem that has been previously studied (in terms of its effects,
desirable extent, etc.) [12,13]. Most of the previous work has
focused on giving this feedback in the form of beautification. In
the context of sketch recognition, the word ‘beautification’ has
been used in two different senses. First, it refers to recognizing and
replacing a fully completed symbol with its cleaned-up version
[14–16]. Second, it is used in the context of partial drawings to
refer to converting the strokes of a symbol to vectorized primitives
such as line segments, arcs, and ellipses [17–19]. Sometimes these
primitives are further processed to adhere to Gestalt principles
(e.g., lines that look roughly parallel/equal-length are made paral-
lel/equal-length) [20–22]. Approaches of the first kind are not
directly comparable to our work, as they only deal with fully
completed symbols. Approaches of the second kind are also not
very relevant in the context of our work, because in these systems
the primitives are recognized and post-processed using Gestalt
principles, however the object class is not predicted.

An implementation of beautification that couples with the idea
of auto-completion has been proposed by Arvo and Novins [23].
They introduce the concept of fluid sketching for predicting the
shape of a partially drawn primitive (e.g., a circle or a square), as it
is being drawn. However, they focus on primitives only, and do
not generalize their system to recognize complex objects. Li et al.
[24] use the term incremental intention extraction to describe a
system that can assist the user with continuous visual feedback.
This method also has the ability to update existing decisions
based on continuous user input. They focus on recognizing multi-
lines and elliptic arcs. Mas et al. [25] present a syntactic approach
to on-line recognition of sketched symbols. The symbols are
defined by an adjacency grammar whose rules are generated
automatically given the small set of seven symbols. The system
can recognize partial sketches in arbitrary drawing order, using
the grammar to check the validity of its hypotheses. The main
shortcoming of this system is its syntactic approach, consisting of
rigid rules for rule application and primitive recognition. In
comparison, we use image features to describe individual sym-
bols to handle different drawing orders and our framework is
fully probabilistic.
An auto-completion application similar to ours deals with the
auto-completion of complex Chinese characters in handwriting
recognition, in which the auto-completion is used to facilitate the
input by providing possible endings for a given partial drawing.
For instance, Liu et al. [26] use a multi-path HMM to model
different stroke orders that may be seen in the drawing of a
character. They report accuracies with respect to the percentage
of the whole character trajectory written. They obtain accuracies
of 82% and 57% when 90% and 70% of the whole character is
drawn, respectively.

In this paper, we present a general auto-completion applica-
tion that is capable of auto-completing sketched symbols without
making any assumptions about the complexity of symbols or
the drawing style of users or the domain. The system classifies
sketched symbols into a set of pre-defined categories while
providing auto-completion whenever it is confident about its
decision. The steps of the proposed method for auto-completion
are explained in detail in Section 2; the experiments on databases
using the method are described in Section 3; the results of the
experiments are discussed in Section 4; and future directions for
research are presented in Section 5.
2. Proposed method

In order to realize auto-completion, our system monitors the
user’s drawing and determines probable class labels and assigns a
probability to each class as soon as new strokes are drawn. If the
drawn (partial or full) symbol can be recognized with a sufficiently
high confidence, the system makes a prediction and displays its
classification result to the user. Otherwise, classification decision is
delayed until further strokes are added to the input symbol.

In order to deal with the ambiguity of partial symbols, a
constrained semi-supervised clustering method is applied to
create clusters in the sketch space. The sketch space is acquired
by extracting features from the extended training data, which
consists of only full symbols and their corresponding partial
symbols. Specifically, each full symbol in the training data and
all partial symbols that appear during the course of drawing that
symbol are added to extended training data (see Section 2.1). The
goal of the clustering stage is to identify symbols that are similar
based on the extracted features, but may belong to different
classes (see Section 2.3). At the end of clustering, a cluster may
contain partial/full symbols from only one class (homogeneous
cluster) or from multiple classes (heterogeneous cluster). Hence,
in the last step of training, we use supervised learning where one
classifier per heterogeneous cluster is trained to separate the
symbols falling into that cluster (see Section 2.4). If a cluster is
homogeneous, then a classifier is not needed for that cluster.

During recognition, the system first finds the distance of a
symbol to each of the clusters and then computes the posterior
probability of each sketch class given the input, by marginalizing
over clusters (see Section 2.5). This is done so as to take into
account the ambiguity in assessing the correct cluster for a given
query. Dealing with probabilities allows us to compute a con-
fidence in the classification decision during the test phase. If the
class label cannot be deduced with a confidence higher than a
pre-determined threshold, as in the case of a partial symbol
shared by many classes, the classification decision is postponed
until more information becomes available. The described steps
are displayed in the form of a flowchart in Fig. 2.

2.1. Extending training data with partial symbols

In standard sketched symbol databases, there are only
instances of fully completed symbols rather than partial symbols.



Fig. 2. The flowchart of the proposed algorithm. (a) The training steps. (b) The testing steps.

Fig. 3. A sample of extending an instance with four strokes. The original symbol

shown in (d) is used to generate the three other symbol instances. (a) After first

stroke. (b) After second stroke. (c) After third stroke. (d) Fully completed symbol.
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In our approach, the training and test data are automatically

extended by adding all the partial symbols that occur during
the drawing of fully completed symbols. More specifically, if a
particular symbol consists of three strokes ðs1,s2,s3Þ, two partial
symbols are extracted fðs1Þ,ðs1,s2Þg and added to the database.
For another user who draws the same symbol using the order
ðs2,s1,s3Þ, the partials fðs2Þ,ðs2,s1Þg are extracted. In this fashion, for
a symbol that consists of S strokes, S�1 partial symbols are
extracted and added to the extended database, in addition to
the original symbol. This process is illustrated in Fig. 3.

The number of all partial symbols that can be generated using
S strokes is exponential in the number of strokes if all combina-
tions of strokes are used. In other words, if we disregard the order
between the strokes, we get 2S

�1 possible stroke subsets for a
symbol with S strokes. However, since we extend the database
with only those partials that actually appear in the drawing of the
symbols, the number of partial symbols added to the database is
much smaller. This issue can be illustrated with an example of
drawing of a stick figure. If no one draws a stick figure starting
with the head which is then followed by the left leg, the system
would not add a partial symbol consisting of the head and the left
leg into the database.

Hence, even though a pre-specified drawing order is not

required by our system, the system takes advantage of preferred
drawing orders, when they exist. Indeed, it is true that when
people sketch, they generally prefer a certain order. This is based
on observations from previous work in sketch recognition and
psychology, which show that people do tend to prefer certain
orderings over others [27–29]. So, our approach puts the focus on
learning the drawing orders that are present in the training data,
so as to reduce the complexity of the sketch space and improve
accuracy. However, a partial symbol that results from a different
drawing order may still be recognized by the system depending
on its similarity to the instances in the sketch space.
2.2. Feature extraction

In order to represent a symbol, which may be a partial or a full
symbol, the Image Deformation Model (IDM) features are used as
proposed in [30]. The IDM features consist of pen orientation
maps in four orientations and an end-point map indicating the
end points of the pen trajectory. In order to extract the IDM
features for a symbol, firstly, the orientation of the pen trajectory
at each sampled point in the symbol is computed. Next, five maps
are created to represent the IDM features. The first four maps
correspond to orientation angles of 01, 451, 901 and 1351, where
each map gives a higher response at locations in which the pen
orientation coincides with the map orientation. The last map
gives a higher response at end-points where a pen-down or pen-
up movement occurs. These operations are carried out using a
down sampled version of the symbol. The major advantage of the
IDM feature representation is that it is independent of stroke
direction and ordering.

2.3. Clustering

There is an inherent ambiguity in decision making during
auto-completion. In order to address this ambiguity, we cluster
partial and full symbols based on their feature representation.
Clusters which contain drawings mostly from a single class
indicate less ambiguity, whereas clusters that contain drawings
from many distinct classes indicate high ambiguity.

In order to cluster training instances, we first experimented
with the unsupervised Expectation Maximization (EM) algorithm
[31]. We used the implementation of EM available in WEKA [32].
The results with the EM algorithm showed a low performance for
full symbols. Since our goal is to provide auto-completion without
sacrificing full symbol recognition performance, we switched to
the semi-supervised constrained k-means clustering algorithm
(CKMeans) [33]. Our motivation when using CKMeans is to
enforce the separation of full symbols of different classes into
different clusters, while grouping the full symbols of the same
class in one cluster through constraints. With this approach, we
aim to reduce errors in classifying full symbols, since errors done
in full symbols may distract the user more than errors done in
partial symbols. The effect of the clustering algorithm on the
recognition accuracies is further discussed in Section 3.6.

The CKMeans algorithm employs background knowledge about
the given instances and uses constraints of the form must-link and



Fig. 4. A visual depiction of defined constraints used in the CKMeans algorithm.

Must-link and cannot-link constraints involving full shapes are represented as

circles and crossed lines, respectively.
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cannot-link between individual instances while clustering the data.
The must-link constraint between two instances specifies that the
two instances should be clustered together, whereas the cannot-link
constraint specifies that the two instances must not be clustered
together. In this work, we generate
�
 Must-link constraints between full sketches of a class since we
want them to be clustered together.

�
 Cannot-link constraints between full sketches of different

classes since we do not want them to be clustered together.

A visual depiction of the must-link and cannot-link constraints
between the fully drawn symbols is given in Fig. 4. The must-link
constraints are shown as circles, indicating that circled instances
should be clustered together; while the cannot-link constraints
are shown as crossed lines between circles, indicating that full-
shape instances in different classes should not be clustered
together. No constraints are generated for partial symbols. We
allow partial sketches of different classes to be clustered together
because partial sketches of different classes can be visually
similar and have similar feature representations.

The constraints are specified using an N � N symmetric matrix,
where N is the number of instances to be clustered in the
extended training set and the matrix elements can be �1, 0,
1 denoting cannot-link, no constraint and must-link constraints,
respectively. The process of generating constraints is handled
fully automatically using the class labels present in the original
training data.
Fig. 5. The visual representation of a synthetic cluster containing six symbols is

given in (a). The completed drawings are given in (b).
2.4. Posterior class probabilities

In order to make a prediction given a test symbol, x, we
compute the posterior probability of each symbol class si, by
marginalizing over clusters

Pðsi9xÞ ¼
XK

k ¼ 1

Pðsi,ck9xÞ ¼
XK

k ¼ 1

Pðsi9ck,xÞPðck9xÞ ð1Þ

where x represents the input symbol; K is the total number of
clusters; Pðsi9ck,xÞ is the probability of symbol class si given
cluster ck and input x; and Pðck9xÞ denotes the posterior prob-
ability of cluster ck given x. Notice that rather than finding the
most likely cluster, we take a Bayesian approach and consider
Pðck9xÞ in order to reflect the ambiguity in cluster selection.

Given the distance from x to each cluster center, an exponen-
tially decreasing density function and Bayes’ formula, we estimate
Pðck9xÞ as

Pðck9xÞ ¼ Pðx9ckÞPðckÞ=PðxÞCe�Jx�mkJ
2

PðckÞ=PðxÞ ð2Þ

where mk is the mean of the kth cluster ck and PðckÞ is the prior
probability of ck estimated by dividing the number of instances
that fall into the kth cluster by the total number of clustered
instances. P(x) denotes the probability of occurrence of the input
x, which is omitted in the calculations since it is the same for each
cluster.
2.4.1. Supervised classification within a cluster

In order to compute Pðsi9ck,xÞ, a support vector machine (SVM)
[34] is trained for each heterogeneous cluster, which is defined as a
cluster that contains instances of more than one class. If an
instance is clustered into a homogeneous cluster, which is defined
as a cluster containing instances of only a single class, then we
simply assign a probability of 1 for the class that forms the cluster
and 0 for the other classes.

Note that supervised classification step can help in cases where
the symbols falling into one cluster can actually be classified
unambiguously. For instance, consider the synthetic cluster given in
Fig. 5a containing six partial symbols. Furthermore, assume that the
corresponding fully completed drawings are given in Fig. 5b. Hence,
the partial symbols in the cluster belong to two distinct classes, either
the class with an upside ‘T’ or a downside ‘T’ inside a square. While
the partial symbols in the cluster look similar enough to be clustered
together, the position of the line in the square can be used to separate
them apart. This is the motivation for training a classifier to separate
the instances falling in heterogeneous clusters. If all the symbols that
fall in a cluster look very similar, the supervised classification may not
bring any contribution and the shapes falling in that cluster would be
labeled as ambiguous by the system, since multiple classes would
have similar posterior probabilities.

The semi-supervised clustering step used before the super-
vised classification performed for each cluster aims to divide the
big problem into smaller problems that are hopefully easier
to solve.

In order to show the contribution of the supervised classifica-
tion step, we conducted an experiment in which we assumed
Pðsi9ck,xÞ ¼ Pðsi9ckÞ and modified Eq. (1) accordingly. Specifically, if
it is assumed that the probability Pðsi9ck,xÞ is independent of the
input instance x, then

Pðsi9ck,xÞ ¼ Pðsi9ckÞ ð3Þ

and Pðsi9ckÞ can be estimated during training by dividing the
number of instances from symbol class i that fall into cluster k by
the total number of instances in that specific cluster. Of course,
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with this assumption there is a loss of information and we see a
decrease in the accuracies, as explained in Section 3.7.
2.5. Confidence calculation

Having computed the posterior class probabilities for an input
symbol, the system either rejects the symbol (delays making a
decision) or shows the inferred class label(s) to the user. In an
auto-completion scenario, the user may be interested in seeing
the Top-N guesses of the system and choose from among those to
quickly finish drawing his/her partial symbol. For example, if
N¼2, the system shows the user two alternative guesses.

Naturally, as N increases, the accuracy increases, though too
many alternatives would also clutter the user interface. Keeping N

as a variable that can be set by a user, the confidence in prediction
is calculated by summing the estimated posterior probabilities of
the most probable Top-N classes. The classification decision is
delayed until there is enough information to unambiguously
classify the symbol if the computed confidence is lower than a
threshold. We refer to the proportion of symbols that are not
classified due to low confidence as ‘‘reject rate’’. If the confidence
is above the threshold, the N most probable classes are displayed
to the user. In the experiments, the system performance is
measured for N¼ ½1;2,3�.
3. Experimental results

The proposed system is evaluated on two databases from
different domains, in terms of the Top-N classification accuracy
in full and partial symbols separately, for varying values of N. For
each database, the system parameters (the number of clusters, K,
and the confidence threshold, C) are optimized using cross-
validation. Parameter optimization is done as follows: for each
parameter value pair (e.g., K¼40 and C¼0.0), we record the
validation set accuracy using eight-fold cross-validation. Cross-
validation is done by splitting the training data randomly, select-
ing 80% of the full symbols and all of their partials as training
examples and the remaining 20% of the full symbols and all of
their partials as validation examples. This is repeated eight times
with randomly shuffled data and the median system performance
on the validation set is recorded, for that particular parameter
combination. The selected parameter pair is then fixed and used
in testing the system on a separate test set.
Fig. 6. A sample symbol from eac
3.1. Databases

The first database we use to test our system is the Course of
Action Diagrams (COADs) database. The COAD symbols are used
by military in order to plan field operations [35]. The symbols in
this database represent military shapes such as a friendly or
enemy units, obstacles, supply units, etc. Some samples of the
hand-drawn symbols from this domain are displayed in Fig. 6. As
mentioned before, some symbols have distinctive shapes whereas
others appear as partial symbols of one or more symbols. For
example, Fig. 6n is a sub-shape of Fig. 6m. In total this database
contains 620 samples from 20 symbols drawn by eight users.

Since no separate test set is available for the COAD database, a
randomly selected 20% of all the available data is reserved for
testing, prior to parameter optimization done with cross-validation.
The parameter optimization for the COAD database aims to find
(C,K) pairs at which the system performs close to human recognition
rates as will be described in Section 3.2. We report the system
performance on this test set in detail in Sections 3.3 and 3.4.

The second database we used in our experiments is the NicIcon
[36] symbol database used in the domain of crisis management. The
database contains 26 163 symbols representing 14 classes collected
from 32 individuals. The symbols represent events and objects such
as accident, car, fire, etc. Some of the sketched symbols from the
database are displayed in Fig. 7. The NicIcon database defines the
training and test sets and in the experiments we used these sets
accordingly.
3.2. Auto-completion performance benchmark

There are no reported auto-completion accuracies for the
COAD and the NicIcon databases, in the literature. However, both
databases have been used before in testing sketched symbol
recognition algorithms designed for classifying full symbols.
While presenting the results of our experiments on the databases,
we give both partial and full symbol recognition performances
and compare them to full symbol recognition rates from the
literature.

In order to test the accuracy decrease due to the auto-
completion scenario (since without knowing that the drawing
ended, we cannot be sure of the class), we measured a human
expert’s performance on the COAD database, assuming an auto-
completion framework. Specifically, we showed all partial and full
symbols in the COAD database to a human expert without telling
h class in the COAD database.



Fig. 7. A sample symbol from each class in the NicIcon database.

Table 1
Human accuracy showing the proportion of partial and full symbols that need to

be rejected in order to achieve 100% accuracy, for varying values of N ¼ ½123� on

the COAD database. The reject rate indicates percentage of the cases where the

human expert decided that there is not sufficient information for classification,

hence declined prediction.

Top-N policy Partial

accuracy (%)

Full

accuracy (%)

Reject rate

for partial (%)

Reject rate

for full (%)

N¼1 100 100 75.36 33.58

N¼2 100 100 61.74 18.25

N¼3 100 100 55.07 12.41

Table 2
Validation accuracies for the COAD database for N¼1 using the EM algorithm.

K/C Partial

accuracy (%)

Full

accuracy (%)

Reject rate

for partial (%)

Reject rate

for full (%)

80/0.87 88.40 96.90 71.68 33.87

60/0.84 91.50 98.31 73.26 33.87

40/0.84n 91.37 98.44 73.83 33.33

Table 3
Test accuracy for the COAD database for N¼1 using the EM algorithm.

K/C Partial

accuracy (%)

Full

accuracy (%)

Reject rate partial (%) Reject rate

for full (%)

40/0.84 94.05 97.98 63.95 27.74

Human 100.00 100.00 75.36 33.58
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whether the drawing was finished or not. The expert was then
asked to choose the correct class if the sample could be classified
unambiguously for varying values of N, and reject it otherwise.

The first row of Table 1 indicates that 75.36% of the partial
symbols and 33.58% of full symbols are found to be ambiguous
when N¼1; that is when the expert is asked to identify the
correct class. The symbols that were not rejected were classified
with 100% accuracy. As mentioned before, both partial and full
symbols in a database may be ambiguous in an auto-completion
scenario, without knowing that the user has finished drawing. In
particular, full symbols that are found ambiguous are those that
can be partial drawings of other symbols.

For N¼2 and N¼3, the task is to decide whether the symbol
can be placed with certainty in one of the N possible classes,
hence, the reject rates decrease as N increases. Human performance
for the NicIcon database was not calculated due to the large size of
the database and the amount of manual work involved.

Human recognition rates may be used as a point of reference
for assessing an automatic recognition system’s performance. In
particular, we can compare the proposed system’s accuracy to
that of the human expert’s, at the reject rates close to the expert’s.

3.3. Accuracy on the COAD database with EM clustering

As described in Section 2.3, we first used the EM method for
clustering. We summarize the validation and test performances
on the COAD database using the EM algorithm, so as to motivate
the use of the CKMeans algorithm.

Table 2 shows a summary of the cross-validation accuracies
obtained with different values for the system parameters (cluster
count parameter K and confidence threshold C) that give reject
rates close to human reject rates, for comparability. The best
parameter pair giving the highest validation set accuracy is
indicated with an asterisk. We then used the chosen parameters
(K ¼ 40, C ¼ 0:84) to evaluate the test set performance, obtaining
the results shown in Table 3. The human accuracies and reject
rates measured on the whole COAD database are also listed for
easy comparison.

While the results shown in Table 3 are already good (not
only lower reject rates compared to human reject rate, but also
somewhat lower accuracies compared to human accuracies), we
next evaluated the semi-supervised CKMeans algorithm that was
expected to do better with the fully drawn symbols, due to the
imposed constraints. The results obtained using the CKMeans for
clustering while keeping the other parts of the system unchanged
are given in the next sections.
3.4. Accuracy on the COAD database using CKMeans clustering

The performance surface of the system during validation with
respect to the system parameters for the COAD database is shown
in Fig. 8, while representative points on this performance surface
are listed in Table 4. The table is organized such that the first
three rows present accuracies where the system is forced to make
a decision (C¼0); while the last three rows present accuracies
where the reject rates are close to human expert rates. Note that
the accuracy result for full shapes at zero reject rate is comparable
to recognition results without auto-completion, while the accura-
cies at human reject rates can be compared to human accuracies.

The best results are obtained with K ¼ 40, C ¼ 0:74 and
K ¼ 40, C ¼ 0:00, depending on whether the system has the reject
option or not, respectively. The corresponding test performance,
obtained with these parameters, is shown in Table 5. One can see
that the system achieves 100% accuracy for full symbols and
92.65% for partials, when the reject rates are even lower than the
human reject rates. This counter intuitive result is explained in
Section 3.4.1.

When N¼2 and N¼3, the accuracies increase since the system
can make two/three guesses as to what the class of the object is.
We again choose the best parameters in terms of validation set
accuracy at close to human reject rates, which are found to be
K ¼ 40, C ¼ 0:88 for N¼2 and K ¼ 40, C ¼ 0:95 for N¼3. At these
settings, the test accuracies are given in Tables 6 and 7.



Fig. 8. Validation performance for N¼1 , on COAD database, using the CKMeans algorithm. (a) The performance surface for full symbols. (b) The performance surface for

partial symbols.
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As mentioned before, the COAD database does not have
explicitly defined training and test sets. So, in order to strengthen
our results, we repeated the experiments using five-fold cross
validation where for each fold, 20% of the instances are separated
for testing and the remaining instances are used for training.
In each of these five experiments, the system parameters are
optimized in a separate cross-validation as explained above, using
only the training set allocated in that fold. For brevity, the results
obtained with different test sets are shown in Table 8 for only
N¼1, along with the selected optimal parameter values. The row
labeled Exp1 contains the results that are presented before. As
illustrated in the table, the test results with different folds show
low variance for the proposed classification method.
3.4.1. Discussion

For the COAD database, Tumen et al. [37] report a recognition
accuracy around 96% for full symbols. This can be compared to
the 97.08% accuracy obtained by our system during testing of full
symbols, when reject was not an option (first row of Table 5). So,
our system not only achieves better accuracy, but also does so
while providing auto-completion.



Table 4
Validation performance for N¼1 using the CKMeans algorithm on the COAD

database.

K/C Partial

accuracy (%)

Full

accuracy (%)

Reject rate

for partial (%)

Reject rate

for full (%)

80/0.00 58.03 96.77 0.00 0.00

60/0.00 52.48 97.85 0.00 0.00

40/0.00n 58.49 96.77 0.00 0.00

80/0.83 90.46 100.00 75.00 30.11

60/0.79 88.71 100.00 75.76 23.12

40/0.74n 95.48 99.31 75.47 24.19

The rows with n indicate the parameters giving the best results.

Table 5
Test performance for N¼1 using the CKMeans algorithm on the COAD database.

K/C Partial

accuracy (%)

Full

accuracy (%)

Reject rate

for partial (%)

Reject rate

for full (%)

40/0.00 54.94 97.08 0.00 0.00

40/0.74 92.65 100.00 70.82 17.52

Human 100.00 100.00 75.36 33.58

Table 6
Test performance for N¼2 using the CKMeans algorithm on the COAD database.

K/C Partial

accuracy (%)

Full

accuracy (%)

Reject rate

for partial (%)

Reject rate

for full (%)

40/0.00 72.10 99.27 0.00 0.00

40/0.88 95.00 100.00 65.67 18.25

Human 100.00 100.00 61.74 18.25

Table 7
Test performance for N¼3 using the CKMeans algorithm on the COAD database.

K/C Partial

accuracy (%)

Full

accuracy (%)

Reject rate

for partial (%)

Reject rate

for full (%)

40/0.00 79.83 99.27 0.00 0.00

40/0.95 97.53 100.00 65.24 17.52

Human 100.00 100.00 55.07 12.41

Table 8
Experiment results obtained using different test sets. Exp1 refers to the results

given in Tables 4 and 5. The last row shows the mean of the accuracies and reject

rates for the five-folds.

ID K, C Test Type Validation

accuracy

(%)

Validation

reject (%)

Test

accuracy

(%)

Test

reject

(%)

Exp1 40, 0.74 Full 99.31 24.19 100 17.52

Partial 95.48 75.47 92.65 70.82

Fold 1 100, 0.78 Full 100.00 28.19 100.00 24.63

Partial 87.69 77.19 90.00 76.53

Fold 2 80, 0.82 Full 100.00 24.91 100.00 18.58

Partial 94.97 73.83 95.92 68.70

Fold 3 80, 0.82 Full 100.00 25.51 98.91 22.34

Partial 91.62 75.33 88.00 70.48

Fold 4 60, 0.77 Full 100.00 22.11 100.00 16.10

Partial 94.87 71.24 89.39 69.59

Fold 5 40, 0.75 Full 100.00 25.05 100.00 20.53

Partial 94.19 76.28 98.28 73.52

Mean Full 100.00 25.15 99.78 20.44

Partial 92.67 74.77 92.32 71.76

1 Similar patterns are observed for different cluster sizes as well.
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More importantly, our system obtains 100% recognition accu-
racy in recognizing full symbols (second row, Table 5) at lower

reject rates compared to humans. This may seem unintuitive at
first, but it can be explained by two factors. First of all, human
experts reject a full symbol F and tag it as ambiguous if it is a
partial symbol of some other symbol S. However, if F has not
occurred in the partial symbols of S in the training data, that
information is exploited in the presented system. For instance, if
the outer squares in Fig. 6b–e are always drawn last, then Fig. 6a
is not a partial symbol of any of these symbols in practice. This
information is captured by the system, as explained in Section 2.1.

Secondly, our system is biased toward performing better in full
symbol recognition, when CKMeans is used with the constraints
of not mixing full shape clusters. The algorithm is designed this
way because, as mentioned earlier, an error in classifying a full
symbol might cause more of a distraction to the user, than an
error in classifying partial symbols.

3.5. Accuracies on the NicIcon database using CKMeans clustering

The validation set performance of the system with respect to
the system parameters for the NicIcon database is shown in Fig. 9,
while representative points on this performance surface are listed
in Table 9. The first three rows of the table present accuracies on
the performance surface at zero reject rate. Since no human
expert labeling is done for this database, the last three rows in
the table present the points at which less than 10% of the partials
are rejected. The best results are obtained with K ¼ 20, C ¼ 0:48
and K ¼ 20, C ¼ 0:00, depending on whether the system has the
reject option or not, respectively.

For N¼2 and N¼3, we do not change C and K. At these
settings, the test accuracies are given in Tables 11 and 12.
3.5.1. Discussion

As mentioned earlier, the NicIcon database is an easier
database from the perspective of the auto-completion problem
because the symbols in this database have more discriminative
sub-symbols and fewer number of strokes. Even when the reject
rate in partial symbols is 0%, partial symbol recognition accuracy
is quite high (87.63%). As a comparison, the partial symbol
recognition accuracy for the COAD database is only 54.94% as
presented in Table 5.

In [3], the authors report a recognition accuracy of 99.2% for
the NicIcon database. Our system achieves a recognition rate of
93.26% for full symbols, with 0% reject rate as displayed in
Table 10. Our recognition accuracy in full symbols is lower than
the reported recognition rate on this database. However, our
system is capable of performing auto-completion which is a
valuable feature for sketch recognition applications.

The last experiment result in the NicIcon database for N¼3 is
interesting. When N¼3, our system produces a higher recognition
accuracy for partials than for fully completed symbols (97.47% vs.
96.75%). This result also supports the claim that auto-completion
is well suited to the symbols in this database.
3.6. Comparison of clustering algorithms

In order to better observe the effect of semi-supervision on
performance, we compared the accuracies obtained using each of
the two clustering algorithms, for varying reject rates. In Fig. 10,
we present the comparison of EM and CKMeans in full symbol
recognition using 80 clusters.1 We can observe that the CKMeans



Fig. 9. Validation performance surface for N¼1 using the CKMeans algorithm on the NicIcon database. (a) The performance surface for full symbols. (b) The performance

surface for partial symbols.
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performs better for all reject rates and achieves a high accuracy
even for low reject rates.

Similarly, Fig. 11 compares the partial symbol recognition
accuracies, using the two clustering algorithms. We see that in
the presence of semi-supervision, the accuracies increase when
CKMeans is used not only for full symbols but also for partial
symbols.

3.7. Effect of supervised classification

As mentioned earlier in Section 2.4.1, we also conducted
an experiment in order to observe the effect of supervised
classification on system accuracy. We repeated the same experi-
ments as above, using the NicIcon database, but removing
the supervised classification component completely and using
Eq. (3).

When the supervised learning step was eliminated, the best
validation result at zero reject rate was obtained for 40 clusters.
When the test performance was measured at this setting
(K ¼ 40, C ¼ 0:00), we obtained the results given in Table 13.
In this table, the first row shows the test performance on the
NicIcon database using supervised classification (from Table 10)
whereas the second row shows the test performance without
the supervised classification. The contribution of the supervised
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classification is clear according to these results: through the
supervised classification step, the accuracy increases not only
for full symbols, but also for partials.

3.8. Implementation and runtime performance

We used LibSVM for the implementation of support vector
machines [38], while the code for testing is written in Matlab.
Classification of a single test instance takes roughly 0.07 s on a
Table 9
Validation performance for N¼1 using the CKMeans algorithm on the NicIcon

database.

K/C Partial

accuracy (%)

Full

accuracy (%)

Reject rate for

partial (%)

Reject rate

for full (%)

60/0.00 90.75 98.43 0.00 0.00

40/0.00 91.39 98.52 0.00 0.00

20/0.00n 91.88 98.64 0.00 0.00

60/0.42 94.79 99.10 9.33 1.80

40/0.42 95.00 99.37 8.94 1.96

20/0.48n 95.92 99.40 9.74 2.36

The rows with n indicate the parameters giving the best results.

Table 10
Test performance for N¼1 using the CKMeans algorithm on the NicIcon database.

K/C Partial

accuracy (%)

Full

accuracy (%)

Reject rate

for partial (%)

Reject rate

for full (%)

20/0.00 87.63 93.26 0.00 0.00

20/0.48 93.06 96.97 14.33 7.34

Table 11
Test performance for N¼2 using the CKMeans algorithm on the NicIcon database.

K/C Partial

accuracy (%)

Full

accuracy (%)

Reject rate

for partial (%)

Reject rate

for full (%)

20/0.00 94.81 95.71 0.00 0.00

20/0.48 95.66 96.51 2.77 1.80

Table 12
Test performance for N¼3 using the CKMeans algorithm on the NicIcon database.

K/C Partial

accuracy (%)

Full

accuracy (%)

Reject rate

for partial (%)

Reject rate

for full (%)

20/0.00 97.47 96.75 0.00 0.00

20/0.48 97.57 96.86 0.30 0.19

Fig. 10. Comparison of full symbol accuracies on the COA
2.16 GHz laptop. So, the system runs in real time—as required for
an auto-completion application.
4. Summary and discussions

We describe a system that uses semi-supervised clustering
followed by supervised classification for building a sketch recog-
nition system that provides auto-completion. Our system
approaches the auto-completion problem probabilistically and,
although we have used a fixed confidence threshold during our
tests, the confidence parameter can be modified by the user to
specify the desired level of prediction/suggestion from the sys-
tem. Experimental results show that predictions can be made for
auto-completion purposes with high accuracies when the reject
rates are close to that of a human expert. As described in the
experiments, our system achieves 100.00% and 92.65% accuracies
in the COAD database at human expert reject rates for full and
partial symbols, respectively. For the NicIcon database, 93.26%
and 87.63% accuracies are obtained without rejecting any
instances for full and partial symbols, respectively. The system
works in real time.

Few points are worth noting. First of all, there is a trade-off
between accuracy and the ability to make predictions. For all
values of N and K, increasing the confidence threshold improves
accuracy, but it also increases the reject rate. It is important to
locate points at which both reject rates and accuracies are
acceptable. These points are found in this work using a validation
set, while in the actual application, the confidence threshold for a
similarly selected K could be adjusted by the user.

Another point is that the system does not discriminate
between full and partial symbols in its rejections. When the
confidence threshold increases, more and more full symbol
instances are rejected. However, what we would really like is to
recognize full symbols well, at the cost of rejecting more partials
if necessary. As we discussed in Section 3.6, integrating knowl-
edge about the full symbols and using a semi-supervised cluster-
ing algorithm achieve this to some degree and also increase
partial symbol recognition accuracy.
5. Future work

In this work, although we addressed on-line sketch recogni-
tion, we assumed that the scene contained only one object (either
partial or full). In other words, we have not addressed issues that
come up in the context of continuous sketch recognition where
the scene may contain multiple objects. As shown the in previous
work [39], continuous sketch recognition has its own challenges.
In particular, the issue of how segmentation and auto-completion
D database, using EM and CKMeans with 80 clusters.



Fig. 11. Comparison of partial symbol accuracies on the COAD database, using EM and CKMeans with 80 clusters.

Table 13
The effect of removing the supervised classification step on the accuracies.

Method K/C Partial

accuracy

(%)

Full

accuracy

(%)

Reject rate

for partial

(%)

Reject rate

for full (%)

Proposed 20/0.00 87.63 93.26 0.00 0.00

No

supervision

40/0.00 74.96 89.37 0.00 0.00
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can be addressed simultaneously requires further research. It may
be the case that an approach that is based on dynamic program-
ming may suffice and can be adapted to a scenario where the
most recent object is partially drawn. It may also be the case that
introducing the option for auto-completion may require modifi-
cations to the segmentation framework. More specifically, one has
to make sure that the segmentation hypotheses generated by the
recognition system allows only the latest object to be partial; all
other groups computed by the segmentation step will have to
correspond to fully completed objects.

Another question that arises naturally is how humans react to
an interface which offers auto-completion. In order to figure out
how and when auto-completion should be offered, user experi-
ments need to be carried out. During those experiments, the
parameters that we used throughout the paper, such as con-
fidence threshold C and the number of choices to be offered, N,
can be studied to find optimum parameter values.

Integrating machine learning methods for classifier combina-
tion into the system is also a future direction of research. During
experiments, we observed that certain values of K do a better job
at predicting full symbols, whereas others are better at predicting
partials. Exploring a system that employs an ensemble of different
K values can further boost the accuracies.
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