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The increasing availability of pen-based hardware has recently resulted in a parallel growth in sketch-
based user interfaces. Sketch-based user interfaces aim to combine the expressive power of free-hand
sketching with the processing power of computers. Most sketch-based systems require intelligent ink
processing capabilities, which makes the development of robust sketch recognition algorithms a primary
concern in the field. So far, the research in sketch recognition has produced various independent
approaches to recognition, each of which uses a particular kind of information (e.g., geometric and spatial
constraints, image-based features, temporal stroke-ordering patterns). These methods were designed in
isolation as stand-alone algorithms, and there has been little work treating various recognition methods
as alternative sources of information that can be combined to increase sketch recognition accuracy. In this
paper, we focus on two such methods and fuse an image-based method with a time-based method in an
attempt to combine the knowledge of how objects look (image data) with the knowledge of how they are
drawn (temporal data). In the course of combining spatial and temporal information, we also introduce a
mathematically well founded fusion method for combining recognizers. Our combination method can be
used for isolated sketch recognition as well as full diagram recognition. Our evaluation with two
databases shows that fusing image-based and temporal features yields higher recognition rates. These
results are the first to confirm the complementary nature of image-based and temporal recognition

methods for full sketch recognition, which has long been suggested, but never supported by data.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Sketching is a natural way of expressing and sharing ideas. It
allows us to succinctly convey concepts on paper. These qualities
of sketching has caught the attention of many graphics application
designers who have started exploring graphics applications that can
take advantage of intelligent sketch-based interfaces. In addition, the
increasing availability of Tablet PCs and other hardware that support
pen-based interaction has led to increased interest in interactive
graphics applications that can interpret hand-drawn sketches.

At the core of these interactive sketch-based graphics applications
lies the sketch recognition technology. Given a hand-drawn sketch,
sketch recognition can informally be defined as the task of find-
ing groups of ink in the sketch that represent individual objects
(segmentation), and then determining the class of the object repre-
sented by each ink group (object recognition). So far, researchers have
attempted to address both issues within recognition frameworks that
mainly differ by the particular kind of information used.
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For example, some authors assumed simple definition of drawings
and treated icons as gestures. This group of work use distinguishing
global features extracted from single or multiple strokes for object
recognition [1,2].

Others preferred to define objects using geometric and spatial
constraints [3-7]. These constraint-based approaches are founded
on cognitive science studies which suggest that, when shown a
symbol, people attend preferentially to certain geometric features
(e.g., arectangle is formed by two pairs of lines of equal length, and
the lines meet with a 90° angle).

Other authors have taken a more computer-vision-like approach
to recognition and formulated image-based algorithms that use image
features such as pixel intensities, and intensity histograms [8-10].

A fourth class of recognition algorithms are based on the temporal
stroke-ordering patterns that are naturally used while drawing
diagrams [11-14]. The motivation for these time-based approaches
is based on the observation that when people sketch objects, they use
highly characteristic drawing orders (e.g., when drawing a stick figure,
most people draw the head first, and then respectively draw the body,
the legs and the arms). Hence the stroke-ordering patterns in sketches
can be used for sketch recognition.

So far, research efforts have mostly focused on getting the best
recognition accuracy with any one of the approaches listed above
(gesture, constraint, image, and time-based approaches). Relatively
little effort has been spent to explore how various recognition
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methods can be used as individual sources of information, and
combined to boost sketch recognition accuracy. Specifically, the
issue of how temporal recognition methods can be combined with
others for segmenting and recognizing complete sketches has not
been studied.

This paper is a step in this direction. We focus on combining
image-based and time-based recognition methods. We have three
main contributions:

e Drawing upon results from combining classifiers, we choose a
set of combination methods and evaluate them for combining
image-based and time-based recognizers.?

e We describe a mathematically well-founded classifier combi-
nation method for full sketch recognition (i.e., continuous
sketch recognition).

e Using two databases, we show that fusing image-based and
temporal features yields better recognition rates compared to
using either method alone. These results not only show the
virtues of combining multiple recognition methods, but are also
the first to show the complementary nature of image and time-
based methods for full sketch recognition, which has long been
suggested, but never supported by data.

In the rest of this paper, we first describe an image-based
recognition algorithm that uses Zernike moments, and a time-
based sketch recognition algorithm that uses Hidden Markov
Models. In Section 4, we describe five methods for classifier fusion
that are subsequently used for fusing image-based and time-based
features for isolated symbol recognition. In Section 5, we describe
how isolated symbol recognizers can be combined using dynamic
programming to simultaneously segment and recognize entire
sketches with many symbols. In the evaluation section, first we
evaluate the performance of the five classifier fusion methods for
isolated symbol recognition using two different databases. Then,
we report recognition accuracies of image-based, time-based, and
combined recognition methods for recognizing full sketches.
We also report the runtime for our recognition and preprocessing
algorithms. We conclude with related work and a summary of
future research directions.

2. Image-based recognition method: Zernike moments

Although there are many image-based recognition methods,
we adopt one based on Zernike moments, which was demonstrated
as a simple and effective method for sketch recognition. Our use of
Zernike moment features for sketch recognition is based on work
by Hse et al. [9], and we refer the reader to this work for the details
of feature extraction using Zernike features.

Zernike moments work with bitmap image representations,
where the input is represented by a function f{x,y), which is equal to
1 if there is a point at position (x,y), and 0 otherwise. The moments
Anm of f{xy), are defined over a unit circle as
An,rn = %;?(va)vn,m(xvy)- X2 +y2 < 1

and V,,, and R, are defined as
Vam(x,y) = Vn,m(/),()) = R11,m(p)€‘im9

(n—|m|)/2
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2 Although we focus on fusing image-based and time-based recognizers, the
fusion methods that we propose generalize to multiple sources of information.

where n (the order of the moment) is a positive integer, m is an
integer such that n—|m| is even and |m|<n, p =+/x2+y2, and
0 =tan 'y/x. Here the moments |A,,| normalized by Ago make
good rotation and scale-invariant features. We feed these features
into linear SVMs for classification.

3. Time-based recognition method: hidden Markov model
(HMM)

Existing time-based methods use either HMMs or Dynamic
Bayesian Networks, which generalize HMMs. For our purposes,
both approaches are essentially equivalent, hence we use an HMM-
based approach.

3.1. Brief introduction to hidden Markov models

Hidden Markov models are used extensively for modeling time-
varying signals and processes. Here, we adopt the terminology and
notation used in [14]. An HMM is defined by A(A,B,7), and specified
by three parameters A,B,n. A is the transition probability matrix
a; = P(q;+1 =jlq: = 1), B is the observation probability distribution
Bj(v)=P(O;=v|q;=j), and 7 is the initial state distribution.
Q={q1,92,...,qn} is the set of HMM states and V={vq,vs,...,vy} is
the set of observations symbols.

3.2. Model topology

Model topology defines the overall constraints that are imposed
over the connections between the states in an HMM. We would like
the HMM states in our models to mimic partially drawn versions
of the given symbol. Hence, as more of a symbol is drawn in time,
we would like to move on to states corresponding to partial
drawings with more strokes. The left-to-right topology framework
[15] allows us to achieve this, therefore as in [14], we use a Bakis
(left-to-right) topology to model the incremental nature of sketch-
ing. This is achieved by setting a;;=0 for each pair of states j <i.

To prevent the HMMs from producing high matching scores for
partial symbols, a dummy end-observation is used to mark symbol
completion. During training, the HMMs are trained with sequences
corresponding to complete objects, and these sequences are
appended with the end-observation before they are passed on to
training. We also designate an end-state to act as the only state that
can generate the end-observation, thus we force all state sequences
corresponding to complete objects to finish with the end-observation.

During recognition, all observation sequences passed to the HMMs
for scoring are also appended with the end-observation. Naturally, if
the observation sequence does not correspond to a complete object,
this would force an unlikely Viterbi path with a low probability
to emit the end-observation. Hence, state sequences for incomplete
(i.e., partially drawn) objects receive very small probabilities if the last
state in the sequence is the end-state.

3.3. Observations

We encode sketches to obtain sequences of observations for
training HMMs and for classification. Our setup supports discrete
as well as continuous observations. This is unlike the general
practice in previous work on HMM-based sketch recognition,
which has focused on either discrete features or continuous
features only. The observations are computed from temporally
ordered primitives extracted by fragmenting the input strokes into
ellipses, arcs and lines using a stroke fragmentation algorithm.

For all primitives, we compute a feature that captures the length
(circumference for ellipses) of the primitive, normalized by the
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bounding box of the entire symbol to make the system scale-
invariant. We also take the angle between the bounding boxes of
consecutive primitives to capture rotation. In addition, for ellipses, we
store the ratio of the minor and major axes, and a measure of extent
for arcs. The observations are modeled using joint density functions of
continuous and discrete feature values as described in [16].

3.4. Classification

For each symbol class, we trained a single HMM using the
standard EM algorithm. One way of classifying a given observation
sequence is to use the likelihood values obtained from each HMM
and assign the class of the HMM with maximum response, under
the assumption of uniform priors.

This approach has the downside that HMMs are generative
models trained only on positive examples, and they are not
discriminative. They are trained to respond maximally to a target
symbol, but they are not trained to discriminate between different
symbols. Therefore, we perform classification by learning a deci-
sion rule that maps all HMM responses to object classes using an
SVM with an RBF kernel.

4. Fusion of the Zernike moments and HMM methods

The goal of combining multiple information sources is to
achieve a superior performance by exploiting the redundant and
complementary nature of the information provided by the different
sources of information.

The ways in which the information sources can be combined
vary depending on the context of the work, and various commu-
nities have come up with different taxonomies that emphasize
different aspects of the combination operation. For example, in the
context of machine learning, one can talk about combining
information sources at the feature level, or at the classifier level
[17,18]. In the context of multimodal interaction, one can talk
about early-fusion, intermediate-fusion, and late-integration techni-
ques [19]. Our focus in this work is on combining the outputs of
multiple classifiers, hence our work fits in the classifier-level fusion
category.

One way to achieve classifier fusion is to perform recognition
separately with time-based and image-based methods, and then
combine the obtained probabilities using a combination method.
Based on previous work in classifier fusion [17,18], we chose the
following combination methods for experimentation: Mean rule,
Dempster-Shafer combination rule and Naive Bayes.>

Another way to combine the methods is to perform the
classification using all the HMM outputs and Zernike moments
as input features to another classifier (in our case an SVM classifier).
Two SVM-based schemes were tested: one-against-all and one-
against-one classification, as explained below. In all cases where we
used an SVM, we used facilities of LIBSVM to obtain probability
estimates [21].

4.1. Mean combination rule

Mean of estimates obtained from the two methods is used to
estimate symbol probabilities. Although this method is simple, it
was shown to be resilient to probability estimation errors of the
methods to be combined [17].

3 Also see [20] for a detailed taxonomy of multiple classifier decision combina-
tion strategies for character recognition. Our work fits in the “analytical combina-
tion methods” and “horizontal decision combination” categories in that taxonomy.
The combination methods we study here also include applicable strategies listed in
[20].

4.2. Dempster-Shafer combination rule

The Dempster-Shafer theory is used to determine the belief in
certain propositions based on evidence that supports them. The
belief is expressed as a numeric value between 0 and 1 and the
Dempster-Shafer combination rule [18] is used to combine two
belief functions:

thm(S)Pzer(S)
1_HS, #S thm(sl )Pzer(sz)

where S is a symbol class, B is the combined belief function, and Py,
and P, are the methods’ probability distributions, which for the
purposes of the Dempster-Shafer combination are considered to be
the belief functions. Since in general >"¢B(S) # 1, the combined belief
function is normalized to obtain a proper probability distribution.

B(S) =

4.3. Combination with Naive Bayes

Naive Bayes is a commonly used combination method that
assumes the used classifiers are independent, which we will
assume to be the case here. Two methods that we use have
different classification frameworks, and they operate on features
that are very different in nature (appearance vs. ordering). There-
fore, we believe the independence assumption is reasonable.

The conditional probabilities Ppem0q(S|D), where S is a symbol
class and D is the decision symbol of the method in question, are
estimated from the training data for each method. They are then
used to estimate the posterior probability of the symbol using the
independence assumption:

1
P(S) = E : thm(S|Dhmm) : Pzer(S|Dzer)

where S is a symbol class, P is the combined probability distribu-
tion, Dpmm and D, are the methods’ symbol class decisions, Pymm
and P, are the methods’ conditional probability distributions, and
Cis anormalizing constant. Cis computed such that the marginal of
P(S) over the symbol classes sums up to 1. This normalization is
standard in applications of Naive Bayes.

4.4. SVM: one-against-all (OAA)

For each symbol, an SVM was trained to discriminate it from all
others, as proposed in [22]. The maximally responding SVM gives
the symbol class.

4.5. SVM: one-against-one (OAO)

An SVM was trained to discriminate each pair of symbol classes.
This was done using LIBSVM [21], which combines the outputs of all
the pairwise classification results. The specifics of the algorithm that
combines the decisions from pairwise classifiers is described in [23].

5. Segmentation and recognition of full diagrams

A major problem in sketch recognition is segmentation: partitioning
a sketch into groups of ink that represent individual symbols. Knowing
the correct segmentation of a sketch immensely simplifies recognition.
Therefore, some methods force the users to explicitly specify when they
finish drawing each symbol making the system less usable, which
defeats the main motivation behind sketch-based interfaces.

One could argue that sketch segmentation should not be considered
separate from individual symbol recognition. Instead of segmenting
the sketch first, and then recognizing the individual symbols, it makes
more sense to interleave segmentation and recognition, since after
all, the segmentation step should “know” which set of strokes look
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like a symbol, which is tightly related to its recognition. Also,
proper segmentation should generate groups of ink, each of which
represents a valid complete symbol, and we need recognizers for the
verification. We approach the problem of recognition and segmenta-
tion by generating many recognition hypotheses for small fragments of
the input sketch, and then combining compatible hypotheses to obtain
a globally optimal fragmentation and recognition hypothesis.

5.1. Proposed method for segmentation and recognition

The proposed method is a modification of the method described
in [14]. We construct a graph G(V,E) in which vertices V correspond
to the fitted primitives indexed by the order in which they were
drawn. The weight w(i,j) associated with an edge from v; to v; in
G corresponds to the probability that the set of primitives between
i inclusive and j exclusive correspond to a valid and fully drawn
symbol, or more formally:

w(ij) = msaleiJ-(S) M

where P;(S) corresponds to the probability that primitives with
indices between i inclusive and j exclusive correspond to the
symbol S. This formulation sets the constraint that a symbol needs
to be fully drawn before starting another symbol (in other words,
no interspersing is allowed). The optimal segmentation is computed
through dynamic programming:
{ w(ij)
S(i.j) =max{ max (S@,k) - Sk,j)) (2)
isk<j

where S(ij) is the probability of the optimal segmentation of a
subsketch made of primitives with indices between i inclusive and
jexclusive. Thus, the optimal segmentation of the entire sketch has
the probability S(1,|V|+1), and the segmentation can be recon-
structed in a way that is common for many algorithms that use
dynamic programming: during the calculation of S(i,j) the choices
made along the way (i.e., the value of k or a value indicating w(i,))
are stored in a separate matrix, and this matrix is sufficient to
completely determine the optimal segmentation.

The above setup effectively combines smaller recognition hypoth-
eses into larger ones, and eventually finds the optimal segmentation
of the entire sketch. The initial hypotheses are formed in accordance
with Eq. (1), and then combined into larger hypotheses in accordance
with Eq. (2). Given the observation sequence corresponding to the
entire sketch, for each class, initial hypotheses can be generated using
Eq. (1) for all subsequences of length [, where I, < < Lnax, lmin, and
Imax are the assumed length of the shortest and longest observation
sequences in the entire set of training examples for that class. All
subsequences with lengths outside these bounds are given 0 weight
by setting P;j(S)=0 if j—i < Ly OF j—i > Inax.

5.2. Probability estimates P;j(S)

The posterior probability estimates returned by the time-based
and image-based classifiers described in Sections 2 and 3.4, as well
as the values returned by the fusion method in Section 4 model the
probability that the data represents a particular symbol given that
it represents a valid symbol. Therefore these are in fact conditional
probabilities of the form P;;(S|valid symbol), and should not be
directly substituted for P;;(S) in Eq. (1). If we knew P; j(valid symbol)
we could calculate the required probabilities using

P;;(S,valid symbol) = P;;(S|valid symbol)-
P;j(valid symbol)

We do not calculate P;;(valid symbol) directly, but train a one-
class SVM [24] based on all examples of valid symbols to obtain a

binary approximation. We set P;j(valid symbol) to 1 if the one-class
SVM decides the data represents a valid symbol, otherwise it is set
to 0. This can also be thought of as a filtering stage, where invalid
symbols are filtered out using the one-class SVM and assigned a
probability of 0, while the valid ones that go past the filtering are
recognized using any of the considered methods.

5.3. Choice of the v parameter

In order to train the one-class SVM, one must set a parameter v
that controls how different an example has to be from a known
valid symbol in order to be considered invalid [24]. At the same
time it corresponds to the proportion of valid symbols which are
deemed invalid by this method [24]. This parameter takes a value in
the range [0,1]. A small value means that few valid symbols will be
marked invalid but many invalid symbols will be marked valid,
whereas a large value means the converse. Value of the v parameter
is crucial to the performance of the recognition and segmentation
algorithm. We preferred not to reject symbols aggressively during
filtering, hence assigned a small value to v. This is because there are
at least two more opportunities for filtering out invalid symbols
(e.g., they can receive low score from the time-based method or the
image-based method).

6. Evaluation of the proposed methods

Our evaluation included measuring the accuracy of isolated
object and complete sketch recognition. We also measured the
time required for processing each additional stroke, including the
time required to fragment the stroke, and the amount of time
required for updating the recognition and segmentation hypoth-
eses for each added stroke.

6.1. Evaluation data

We have evaluated our recognition system with two databases.
The first database includes symbols from our Course of Action
Diagrams database, and the other database is the publicly available
Niclcon database [25].

6.1.1. Course of Action Diagrams database

Symbols in this database come from the domain of military
Coarse of Action Diagrams [26] shown in Fig. 2. A complete list of
objects in this domain is listed in the US Army Field Manual 101-5-1.
Among hundreds of symbols in this domain, we focus on a subset of
20 for practical reasons.

Fig. 1 shows examples of computerized versions of Course of
Action Diagrams. As seen in these examples, the figures consist of a
map, which defines the background, and the foreground symbols.
The symbols often appear very close to one another, and also
overlap with drawings that define landmarks such as boundaries,
frontiers, etc. This makes it difficult to bypass the problem of
segmentation by context free preprocessing. Also as reported in
[28], in general simple spatial and temporal grouping approaches
do not work in sketch recognition. Our methods with the non-
interspersed drawing assumption allows us to deal with these
complications.

Some symbols in this domain are quite distinct, while some
others look similar. For example, an Enemy Artillery Observation Unit
(Fig. 2(d)) is the same as Fig. 2(g) with an added small circle in the
middle.

Eight different users were shown symbol images picked
randomly and asked to sketch examples from each of the 20
symbol classes. In total 620 examples of different symbols were
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collected. The number of examples per symbol varied between 27
and 45, with a median of 30.

The recognition and segmentation of full diagrams were tested
on diagrams consisting of individual objects following a common
practice for gesture recognition and handwriting recognition [1].
In total, there are 200 diagrams, each with 3-6 symbols (20 of
the diagrams had 3 symbols, 80 had 4, 60 had 5 and 40 had 6). Each
symbol was randomly chosen from the entire testing set and
positioned randomly in the diagram. Hand drawn symbol examples
are shown in Fig. 3 for a subset of the symbols.

6.1.2. The Niclcon database

The Niclcon database includes multi-stroke symbols used in the
context of an emergency management application (e.g., symbols
for fire, injury [1]). This database contains a total of 23 641 symbols
distributed into 14 classes (Fig. 4). The symbols in the database
consisted of an average of 5.2 strokes, and the average number of
strokes for the individual categories ranged from 3.1 to 7.5.

6.2. Training and testing methodology

For the Course of Action Diagrams, the symbol examples were
split randomly into two sets: the training set with 80% of the
examples and the testing set with the remaining 20%. The training
was done only using the data in the training set while the testing
was done only using the testing set. All the recognition rates quoted
refer to the recognition rates for the test set. The random splitting of
the data, and training/testing using this data were repeated 8 times
and the recognition rates were averaged in order to account for
particularly lucky or unlucky training/testing splits of the data.

For the Niclcon database, we followed the writer-independent
data split proposed by Vuurpijl, where 40% of the data was used for
validation [25]. Thus all results on this database are for the writer-
independent setting.

The recognition accuracy is measured as the percentage of
correctly classified examples of each object class, averaged across
all the symbols in order to account for data imbalance (i.e., the
recognition rate for the symbol with 45 examples contributes as

[ ounaing
B re
TDG #99-12 "

Fig. 1. Two examples of Course of Action Diagrams from the tactical games
published in the Marine Corps Gazette [27].
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much to the overall recognition rate as the one for the symbol with
27 examples).

6.3. Isolated symbol recognition results

Isolated symbol recognition assumes the scene contains only a
single object.

6.3.1. HMM-based methods

The test results in Fig. 5a and b show the recognition accuracy of
the HMM-based methods for our databases. They confirm that
people do tend to sketch symbols in certain ways and that a time-
based approach can yield good recognition rates for isolated object
recognition.

Notably, these results show that HMM-based methods yield
good performance irrespective of the writer-dependency of the
data, because the results for the Niclcon database are for a writer-
independent data split. In fact, as we later present in Table 2, for this
writer-independent setup, the HMM-based methods can outper-
form the Zernike-based methods.

Fig. 5a and b also show that the SVM classification method with
the HMM outputs as its input features substantially and consis-
tently outperforms the common method which just assigns the
symbol class by simply considering the HMM with the largest
likelihood, as predicted in Section 3.4.

6.3.2. Zernike method

The results in Fig. 5 confirm that Zernike moments can be used
successfully in sketch recognition. For low orders, Zernike
moments result in accuracies comparable to those obtained using
HMMs. Higher orders generally yield superior performance. Never-
theless, as we show below the performance is further boosted when
the two methods are combined.

o~ [ E EE S ] =

Fig. 3. Examples of hand drawn Course of Action symbols used in our evaluation.

TN O et [5 &
A Sy 43 8

Fig. 4. Examples of hand drawn icons from the Niclcon database [1]. From top-to-
bottom and left-to-right, the symbols represent fire brigade, gas, roadblock, injury,
paramedics, police, accident, bomb, fire, car, person and flood.
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Fig. 2. The subset of Course of Action Diagram symbols used in our evaluation.
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Fig. 5. The recognition rates achieved using the HMM-based and Zernike-based methods for the Course of Action (a, ¢) and the Niclcon databases (b, d). Values are listed for
various choices of the relevant free parameter for each method—namely the number of states for HMMs, and the order for the Zernike-based method. See [14,9] for a detailed

discussion of the choice of free parameters.

Table 1
Recognition rates obtained using different recognition methods. The number of
HMM states is set to 16, and order of Zernike moments is 12.

Table 2
The recognition rate of the OAO-SVM combination method (Combination) is good
even with small orders of Zernike moments (z) and number of HMM states (h).

Method name Database
COAD Niclcon
Individual methods HMM 0.636 0.588
HMM with SVMs 0.759 0.653
Zernike moments 0.844 0.703
Combined methods Mean 0.872 0.786
Dempster-Shafer 0.880 0.831
Bayesian 0.864 0.777
0OAA-SVM 0.843 0.760
0AO-SVM 0.864 0.814

6.3.3. Fusion methods

Further improvement in recognition accuracies is possible by
combining the Zernike moment and HMM-based methods. Test
results in Table 1 show that with the exception of the OAA-SVM
method, all ways of combining time-based and image-based
algorithms gives us better results than what we can achieve
with each method taken individually.? Of the SVM-based methods,
OAO-SVM has superior performance, though this comes with a
cost. In particular, in the OAO the number of classifiers that need to
be trained increases quadratically with respect to the number of
object classes, while the increase is linear in the OAA case.

The improvement in recognition accuracies may appear to be
incremental, nevertheless the corresponding reductions in the

4 Note that the OAA method has been found to yield inferior performance for a
variety of other practical multiclass classification tasks as well (e.g., digit recogni-
tion, image classification, and agricultural applications [29]).

Parameters HMM (%) HMM with Zernike (%) Combination
SVM (%) (%)
Course of Action database
z=6,h=9 59.0 75.2 76.8 85.3
z=8,h=11 60.8 74.9 80.6 85.0
z=10,h=13 62.2 75.1 81.6 86.0
z=12,h=16 63.6 75.9 84.4 86.4
z=14,h=18 64.2 75.5 83.8 87.0
Niclcon database
z=6,h=9 55.8 64.5 61.9 78.6
z=8,h=11 58.7 65.4 67.2 80.1
z=10,h=13 60.9 65.4 69.0 81.1
z=12,h=16 58.8 65.3 70.3 814
z=14,h=18 59.0 64.8 71.3 81.2

error rates are notable. In sketch based interfaces, correcting each
misclassification requires effort on the part of the user and gets in
the way of completing the main task. The relative error reduction
rates for the Course-of-Action database lie around the 20-25% mark
for the Mean and Dempster-Shafer combination methods, and
above 37% for the Niclcon database. Hence, the improvements due
to combining temporal and image-based features are substantial
when considered in the context of a sketch-based user interface.
More importantly, as seen in Table 2, combining the two methods
provides very good results even with considerably smaller order of
Zernike moments and fewer HMM states. The relative error reduction
rates for these parameter settings are listed in Table 3. As shown in
this table, the combination method provides roughly 13-44%
improvement over Zernike moments alone, 24-47% improvement
over using HMMs with SVMs, and 52-64% improvement over using
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Table 3

The relative error reduction rates for pairs of recognition methods under various
choices of Zernike moments (z) and number of HMM states (h). Combining time- and
image-based methods results in substantial reductions in relative error rates.

Parameters HMM vs. HMM vs. HMM with Zernike vs.
HMM with combination SVM vs. combination
SVM (%) (%) combination (%)
(%)
Course of Action database
z=6,h=9 39.51 64.15 40.73 36.64
z=8,h=11 35.97 61.73 40.24 22.68
z=10,h=13 34.13 62.96 43.78 2391
z=12,h=16 33.79 62.64 43.57 12.82
z=14,h=18 31.56 63.69 46.94 19.75
Niclcon database
z=6,h=9 19.68 51.58 39.72 43.83
z=8,h=11 16.22 51.82 42.49 39.33
z=10,h=13 11.51 51.66 45.38 39.03
z=12,h=16 15.78 54.85 46.40 37.37
z=14,h=18 14.15 54.15 46.59 34.49

HMNMs alone for the Course of Action and Niclcon databases. All these
results suggest that even though one can achieve better recognition
rates by improving individual classifiers and features used by these
classifiers, when the methods are combined, the combination always
outperforms the individual methods. Furthermore, these results show
that when taken individually, image-based and time-based methods
provide quite distinct kinds of information about the drawn symbol,
and their combination successfully uses all the available information
resulting in a more accurate recognition method.

Another notable observation based on the results in Table 2 is
that, combining image-based and time-based methods improves
performance irrespective of the writer-dependency of the data. In
particular, the results for the Niclcon database are for a writer-
independent setup, and yet the performance is substantially
improved by combining the two methods.

Numbers in Table 3 also illustrate the contribution of feeding
HMM probabilities to the SVM classifier. As seen in the first
columns in Table 3, up to 40% reductions are obtained in the error
rates when the HMM scores are collectively sent to a classifier, as
opposed to taking the classification suggested by the HMM with the
best score.

6.4. Segmentation and recognition of full diagrams

For the full-diagram recognition tests, we used the Course of
Action Diagram dataset, and employed the OAO-SVM combination
algorithm to estimate the fragment probabilities P; j(S|valid symbol)
(see Section 5.2), because it is analogous to the estimation of P;;(valid
symbol) (Section 5.2).

Before our segmentation algorithm can be run, the v parameter
should be set. In Sections 5.2 and 5.3, we introduced a single class
classification scheme for filtering out invalid symbols. This filtering
had two goals: (1) keep the number of cases where invalid symbols
are marked as valid low, (2) keep the number of cases where valid
symbols are marked as invalid low. Therefore it is important to set
the v parameter such that a good tradeoff is achieved between the
two goals. As discussed earlier, a small v value means that few valid
symbols will be marked invalid but many invalid ones will be
marked valid, whereas a large value means the converse. Fig. 6
shows the recognition accuracy for full-diagrams, for various
choices of v in the Course of Action Diagrams dataset. As seen in
the graph, the optimal value for v lies between the two extremes,
and favors a larger false positive rate to a large false negative rate.
This supports earlier discussion in Section 5.3.
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Fig. 6. Segmentation and recognition of full diagrams, with single symbol recogni-
tion rate of rs=0.8640 (HMM states =16, order of Zernike moments=12).

The full diagram accuracy for our system is rp=0.363 for 12
orders of Zernike moments, 16 HMM states and v =0.01. When
judging the adequacy of full diagram recognition rates, it is critical
to remember that in full diagram recognition, a recognition
hypothesis is counted as a misrecognition even if all but one of
the several symbols in the diagram are correctly recognized. In
addition, errors can occur due to misrecognition of individual
objects, as well as due to segmentation errors.

We carried out further analysis to gain an insight on the
breakdown of the overall error into segmentation and recognition
errors. For a mixture of full diagrams where 10% have 3 symbols,
40% have 4, 30% have 5 and 20% have 6 symbols, we computed the
recognition rate with the assumption of perfect recognition to
be 0.515. Using this estimate, the percentage of errors that could
have been avoided with perfect segmentation was computed to
be (0.515-0.363)/(1-0.363) = 0.239. Therefore, roughly 24% of the
diagram recognition errors can be avoided in interfaces where
users explicitly or implicitly specify the perfect segmentation (e.g.,
by pausing or pressing a button to specify object boundaries).

6.5. Contribution of modeling object completions

As mentioned in Section 3.2, to prevent the HMMs from
producing high matching scores for partially drawn symbols, we
used a dummy end-observation to mark symbol completions. In
order to assess the contribution of modeling object completions in
the full diagram recognition rates, we ran a series of tests where we
measured the full diagram recognition accuracies using HMMs that
do not explicitly model object completions, using the same testing
methodology described in the previous section.

Our tests showed a decrease in the full diagram recognition
rates from 36.3% to 32.0%. This is a 11.8% reduction, which we
believe is substantial. In other words, without end-state modeling,
11.8% of objects that would otherwise be correctly recognized are
misrecognized.

6.6. Evaluation of runtime performance

We measured the time required to fragment each added stroke,
and the amount of time required for updating the recognition and
segmentation hypotheses after each added stroke.

Fig. 7a shows the amount of time taken for fragmenting
each successive stroke computed for the full sketches used in
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Fig. 7. The incremental time taken for stroke fragmentation and object recognition for increasing number of strokes.

the evaluation of the Course of Action database in Section 6.4.
As seen in this figure, the average time required for processing
each stroke is roughly constant, but varies substantially across
strokes.

Fig. 7b shows the incremental time taken for updating the
recognition and segmentation hypotheses after the ith stroke is
added in each one of the 200 sketches used in Section 6.4, computed
as in [4,6]. The horizontal axis shows the stroke index i. As seen in
this figure, the average time required for processing each stroke
hits a stable plateau after the first 10-12 strokes. This is because,
the marginal time complexity of the dynamic programming
operation used in recognition and segmentation is constant with
respect to the number of strokes. In particular, for each new
primitive, one new node, and at most O(n x k) arcs are added to
the shortest path graph G, where n is the number of objects in the
domain, and k=l ;;;5x — Imin. Computing the shortest path to the node
corresponding to the new primitive takes O(n x k) operations. Since
nand k are constant for a given domain, and database, the marginal
cost of each added primitive is constant. This analysis as well as the
numbers shown in Fig. 7b are good indicators of the practicality of
our strategy for realtime recognition in online sketching, especially
considering that the numbers are from our unoptimized Java
implementation executed on a low-end PC.

In both time measurement figures (Fig. 7a and b), we have
included the mean as well as the median processing times. This is
because, as it was also reported in [6], processing times usually
have high variances and the median values serve as better
indicators of the processing time.

7. Related work

In this paper, we fused an image-based method with a time-
based method in an attempt to combine the knowledge of how
objects look (appearance) with the knowledge of how they are
drawn (stroke orderings). We focused on appearance and stroke
orderings because they not only represent conceptually different
aspects of sketching, but they have also been shown to aid
recognition individually. However, our combination method is
general and any method producing probabilistic confidence values
can be used in place of - or in addition to - the two methods

presented here (e.g., fully probabilistic variants of constraint-based
or structural methods as in [30-33]).

The image-based method that we adopted here was suggested
by Hse et al. [9]. There are many other image-based methods
producing probabilistic confidence values that could have been
substituted in place (e.g., [10,30,34] or a fully probabilistic version
of [8]).

Although there are a number of time-based methods for sketch
and gesture recognition [11,13,14,35], the most relevant one is the
HMM-based method described in [14]. Unlike [14] we use discrete
continuous observations, while the original paper uses discrete
observations only, and does not use length information. Also, we
introduced the SVM classification stage which resulted in a 32-40%
reduction in the error rates. Finally, the way we model “end states”
differs from this line of work. Our method allows us to avoid the
extra bookkeeping required for modeling object completions in
[14]. Hence, our method is also easier to implement.

There are isolated symbol recognition systems that work with
presegmented input (e.g., [9,36]), or systems that use domain
knowledge for segmenting symbols in a preprocessing step [37].
Our fusion framework performs segmentation as well as recogni-
tion. Hence we limit our discussion here to systems that can do full
diagram recognition (continuous sketch recognition). There are
other pieces of work that offer solutions for full sketch recognition
under different assumptions. For example, while we make the
assumption that users draw objects one at a time, and stay within
the time-efficient framework of dynamic programming, others
have suggested systems combining constraint-based recogni-
tion schemes with indexing and constrained optimization, relaxing
the assumption that objects are drawn without temporal inter-
spersing of different strokes [31]. Similarly, there are image-based
approaches for joint segmentation and recognition based on
graphical models (e.g., [38,39]). Again, these approaches do not
incorporate temporal information. A complete segmentation/reco-
gnition framework that incorporates temporal information and
allows interspersed strokes is described in our previous work [35].
However that work is based on dynamic Bayesian networks, and
uses temporal information only. Another method for segmentation
and recognition has been suggested by Widmayer et al. [7]. They
describe a combinatorial approach to recognition, and perform a
shortest path search as described in our previous work [14] to
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obtain the best segmentation. However unlike ours, their system
cannot be trained [7], they do not use temporal features, and they
also impose stroke fragmentation unpractical requirements.’

To our knowledge, the method described in [40] is the first to use
dynamic programming for simultaneous sketch segmentation and
recognition. However it uses temporal information only. Similarly,
there are pieces of later work that use dynamic programming with
temporal features only [14] or image-based features only [41].
In this paper, we illustrate how multiple kinds of information can
be fused together.

There are lines of work where the possibility of combining
classifiers have been explored. For example, Kara et al. [8] combine
four image-based classifiers, each of which defines a distance metric
between a drawn symbol and learned templates. This is an example of
combining multiple classifiers, though the authors use only the
“mean-rule” to combine the outputs of the classifiers.® Here, we focus
on combining classifiers that use information sources of substantially
different character (i.e., temporal and image-based). We also present a
comparison of many combination rules, including the Mean rule,
Dempster-Shafer combination rule, Naive Bayes in addition to two
SVM-based combination rules for combining classifiers.

There are also pieces of work where various kinds of features have
been combined together within the constraint-based recognition
framework. For example, Widmayer et al. [7] and Cheriet et al. [5]
describe recognition systems where constraints (as opposed to
classifiers) based on geometric measurements are combined using
various mean-based rules. Anquetil et al. describe a framework that
makes it possible to incorporate “statistical recognition” in a con-
straint multiset grammar-based recognition framework [6]. Although
itis not clear what kinds of statistical recognizers can be incorporated
into this framework, and how they would be combined, the proposed
method offers a way of coupling structural and statistical information.
As it was the case for other pieces of work described above, our work
differs by the virtue that we focus on classifier combination and
evaluate the effectiveness of multiple combination methods for fusing
temporal and image-based information sources. Also, as it is typical of
other approaches that are based on grammars, languages, and
constraints, this approach requires one to manually specify object
definitions, whereas our models are fully trainable.

Although sketch recognition is intrinsically a different problem
compared to handwriting recognition, some of the work is this area is
also relevant. There are many handwriting recognition systems that
combine structural and statistical approaches for recognition [42,43],
but the most relevant ones are those that combine off-line and on-line
information (e.g., work by Neskovic et al. [44], Nakagawa et al.
[45,46]). Similar to our findings, these papers report an increase in the
recognition rates. However, these systems often use only a subset of
the combination rules studied here (e.g., [45,44]), or consider isolated
character/word recognition (e.g., [45,46]), which is analogous to
isolated gesture and symbol recognition, as opposed to the recogni-
tion and segmentation of complete sketches. The analog of recogniz-
ing complete sketches is handwritten text line recognition [47,48],
hence this is the most relevant line of work for us. Text line recognition
in the context of combining multiple classifiers differs from isolated
character or word recognition, because the output of a text line
recognizer is a sequence of word classes rather than just a single word,
and the number of words hypothesized for a given line of text may
differ across recognizers [49]. Similarly sketch recognizers output lists
of recognized objects, and different methods may come up with
recognition hypotheses with different numbers of classes. Two pieces

5 They assume perfect stroke fragmentation is available, which is rarely the case
even in the simplest sketches.

6 Also, the work in [8] uses a greedy approach for segmentation, while we use an
approach based on dynamic programming, which is not susceptible to making
locally plausible decisions that lead to globally poor recognition results.

of work for text line recognition are described in [50,49]. Both of these
systems combine on-line and off-line information. On the other hand,
unlike the dynamic programming framework that we use, they use an
alignment procedure based on the so-called ROVER combination
strategy, which uses a word transition network followed by a voting
step. Because this strategy uses voting, it is more appropriate for
domains with many independent classifiers (experts); hence it does
not suit our case with only two experts.

8. Future work

The HMM-based method can be improved using sophisticated
features computed from ink groups or image patches. Hence features
do not necessarily have to be primitive-based. For example, carefully
designed features based on shape contexts [51], congealing [52] or
other local descriptors can be used. Furthermore feature engineering
and feature selection techniques, which are outside the scope of our
contribution here, can be used to boost accuracy.

As discussed in Section 3.4, one drawback of the HMM-based
method is that HMMs are trained generatively using only the
positive examples of the symbol. It might be better if the HMMs
could be trained to discriminate between symbols directly, which
might remove the need for SVM classification of the HMM outputs.
One way of doing this could be to use maximum mutual informa-
tion for HMM parameter estimation [53]. Another approach could
be to use discriminatively trained HMMs as described in [54].

9. Summary

In this paper, we presented a framework for fusing an image-
based method with a time-based method in an attempt to combine
the knowledge of how objects look (image data) with the knowl-
edge of how they are drawn (temporal data). This is unlike most
existing approaches, which focus on one kind of feature only. We
presented evaluation results for two databases illustrating that
combining classifiers yields higher recognition accuracies, and
confirmed the complementary nature of image-based and tem-
poral recognition methods for full sketch recognition, which was
suggested in the past, but never supported by data. We presented a
mathematically well founded method for segmenting and recog-
nizing entire sketches, and demonstrated how it can be used to
combine different kinds of recognizers.
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