
Automatic construction of 3D animatable
facial avatars

By Yujian Gao*, Qinping Zhao, Aimin Hao, T. M. Sezgin
and N. A. Dodgson
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Rigging for facial animation is an important but time-consuming task, which generally

requires experienced artists with knowledge of facial anatomy. In this paper, we investigate

whether it is possible to produce a good animatable avatar automatically, given only a 3D

static triangle mesh of the head. An automatic mechanism is devised for constructing multi-

layer animatable facial avatars for unseen faces. We evaluate our technique with a variety of

models, and give a quantitative analysis of the constructed results. We also designed and

conducted a user study for evaluating the perceived quality of the generated expressive

animations. The results demonstrate that ourmethod is an appropriate tool for naı̈ve users to

customize their personal 3D avatars. Copyright # 2010 John Wiley & Sons, Ltd.
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Introduction

Since Parke’s pioneering work in the early 1970s 1, facial

animation has been widely used in entertainment,

virtual environment and low bandwidth teleconferen-

cing. In some professional applications such as films or

virtual newscasters, high quality photorealistic facial

animations are usually achieved at the cost of intensive

manual rigging and tuning by highly trained artists with

knowledge of facial anatomy. But this is not the main

focus of our paper, and high fidelity is not the only

measuring stick for facial animation. There are certain

popular applications where user-level control and

customization are more important than having complex

photorealistic models. For example, in virtual environ-

ments or online games where users have lookalike

avatars of themselves, it is vital for users to be able to

customize their avatars easily and quickly. However,

most of the current animation techniques lack univers-

ality and require intensive manual rigging from

scratch when facial geometry changes. This results

in a bottleneck in facial animation applications.

Therefore, an emerging interesting question is: is it

possible to produce a good animatable model of a head

automatically, given only a 3D static triangle mesh of the

head?

Motivated by this question, we investigate and

compare the current facial animation techniques, and

present an automatic method for constructing multi-

layer animatable facial avatars. Our work provides a

workable mechanism by which the muscles and

additional animation controls can be positioned auto-

matically. The entire construction process is depicted in

Figure 1. Our method consists of two steps: first, we

detect 3D facial landmarks using a novel method which

combines both 2D and 3D information. Second, a

predictor is trained by learning the mapping between

landmarks and underlying muscle positions, and then

used for muscle construction. Our method makes it

straightforward for naı̈ve users to generate animatable

faces and customize their own avatars without expert

knowledge.

The main contributions presented in this paper are:

� Anewmechanism for landmark detection on 3D facial

meshes. Our method makes use of both 2D and 3D

information for robust detection, in particular improv-

ing over previous 3D shape analysis methods. It can

also be used as a pre-processing step for many tech-

niques such as mesh parameterization or feature-

based interpolations.
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� A novel method for automatically constructing multi-

layer animatable facial avatars. We employ regression

techniques to investigate how well the automatically-

captured landmarks can be mapped to an underlying

muscle distribution. A predictor is trained to predict

muscles from detected 3D landmarks.

The next two sections describe our algorithms for 3D

landmark localization and multi-layer model construc-

tion. We then present the results of our evaluation in

experiment section, where we demonstrate that our

system generates acceptable animations for awide range

of 3D facial models. We finally discuss related work in

the light of our new method.

3DFacial Landmark Detection

Most of the previous landmark detection methods focus

on the shape and curvature features of 3D meshes.2–5

However, they all suffer from problems caused by

surface irregularities of models, and also depend on a

pre-processing step that identifies which part of the

model is face. Besides, curvature-based methods are

only capable of detecting landmarks with distinct

curvature features, i.e. eye corners and mouth corners,

which are insufficient for our muscle prediction task.

Motivated by 2D feature point detection techniques,

we incorporate texture information into our landmark

detection method. By doing this, we avoided running

into the limitations inherent in techniques that use only

curvature information.

To utilize both the 2D and 3D information for robust

landmark detection, we follow an iterative search

mechanism. First, an image-based landmark detection

method is devised to obtain an initial estimate of

landmark locations. This step mainly focuses on

exploiting the information conveyed by 2D texture

and guaranteeing the global shape as well as the spatial

relativity of landmarks. The second step is to refine the

location of landmarks according to the local curvature

within constrained areas. We iteratively apply these two

steps until the results converge or a maximal iteration

reached.

Image-based Landmark
Detection

The textures of 3D models are usually distorted or

separated when they are flattened, therefore we cannot

directly use them for 2D feature point detection. In order

to prepare smooth texture data, we first render a frontal

image of the face model with texture under uniform

illumination. We assume that the face is oriented

towards the z-axis. This is the default orientation for

the majority of 3D facial models. For the exceptional

Figure 1. The construction process of an animatable facial avatar.
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cases, the proper orientation can be obtained through

principal component analysis (PCA) or by manual

adjustment. The rendered image is then fed into a 2D

facial feature detector implemented based on Bayesian

Tangent Shape Model (BTSM).6 Considering that the

muscles are scattered all over the face, using only the

landmarks around eyes and mouth will dramatically

degrade the prediction quality, therefore we set more

landmarks to cover the whole face including boundary

of the frontal face (see Figure 2).

After locating the 2D feature points, a 2D to 3D

projection is applied to compute the corresponding

landmarks on the 3D mesh. This is achieved by

projecting the landmarks perpendicular to the image

towards themodel (see Figure 3a). The point where each

projection ray hits the 3D face surface is preserved as the

initial landmark location. This image-based landmark

detection method does not take 3D geometry into

account, therefore it is invariant to the complexity of the

3Dmodel, and it works effectively even for substantially

complex 3D models which contain other objects with

face-like curvature features.

Landmark Ref|nement using
Shape Analysis

Although human faces vary a lot due to sex, race, etc.,

certain regions of the face have characteristic curvature

signatures. Therefore, these intrinsic curvatures can

be used for conducting the refinement of landmark

locations. Previous works2–5 have shown that if the

search areas can be limited to reasonably small regions,

the accuracy of search results could be very high. Given

the initial landmarks obtained in the previous step, we

can easily confine the first 22 landmarks’ refinement

process to rectangular regions centred at the current

positions, see Figure 3b (the boundary landmarks

remain unchanged in this step). We define the side

length of the search areas as:

Lmouth ¼ k P13P15
 ���� k þ k P14P16

 ���� k
2

; Leye

¼ k P17P1
 ��� k þ k P18P2

 ��� k
2

: (1)

where Lmouth is the search length for mouth areas (green

squares), and Leye is for areas around eyes (blue

squares). These search lengths constrain the search

results to be local optimum.

Each landmark has a curvature type (see Table 1).

Once the search direction is decided, we estimate the

Gaussian (K) and the mean (H) curvatures for points

within the search areas by computing the partial

derivatives. Using these two curvature values, we

determine the curvature type of each point based on

Table 2. Of all the landmark candidates within each

search area, the point, which has the most obvious

corresponding curvature feature in Table 1, is chosen as

the new landmark.

Figure 2. The 22 feature points on the face and 15 feature points on the facial outline.

Figure 3. (a) The 2D–3D projection scheme. (b) Search areas

for landmark refinement.
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When this step finishes, we check whether the

convergence has been achieved by comparing current

results with previous iteration. If not, the landmarks

would then be projected back onto the 2D image, and the

image-based landmark localization will be carried out

again.

AutomaticModel Rigging

We employ Zhang’s7 nonlinear multi-layer architecture

as the rigging model. Justification for choosing this

model is given in Section 5. Note that our contribution is

not the multi-layer model but the automatic mechanism

of generating animatable avatars. To rig the face model,

our first task is predicting muscles using the detected

landmarks. Therefore, we need to train a predictor that

learns the spatial relationship between the landmark

positions and the muscles from examples. Since we

cannot determine beforehand whether the mapping is

linear or nonlinear, we tried both of them and made an

objective comparison between their results.

Training Data Collection

Before training, we first collected a set of 50 3D

triangulated facial models as training data, covering a

wide range of human facial variation. All these models

were in Wavefront .obj format and normalized into the

same coordinate system, with their geometric centre

at the origin. Three-dimensional landmarks were

localized for each model automatically with our

proposed method, whereas muscles were constructed

and adjusted manually for each face: an initial coarse

muscle model was first built for each facial geometry,

which was then manually tuned by artists experienced

in facial animation until plausible expressive animations

were obtained. Although the process of building facial

muscles is labour-intensive, it only needs to be done

once. For all subsequent unseen faces, we only need the

mapping previously learned from the training data to

construct the muscles. Figure 4 shows some of the

training models with landmarks and muscles attached.

CCA-based Linear Regression

The predictability between variables greatly depends on

their inter-correlation, that is, how well we can estimate

the muscles from the landmarks depends on how great

an inter-correlation exists between them. Canonical

correlation analysis (CCA) is a statistical technique

developed by Hotelling8 for revealing the functional

dependencies between two sets of measurements. It

can maximize the correlation between the two sets of

variables, and is well-suited as a pre-processing step

for regression because of its ability to capture data

dependency while avoiding overfitting.

Each of the 23 linear muscles and sheet muscles is

determined by two endpoints, therefore all the muscles

of one face are determined by 46 points.We define n¼ 50

as the number of training examples, p¼ 37 as the

number of landmarks and q¼ 46 as the number of

muscle endpoints on each face. Then the training data

can be expressed using two sets of variables, denoted as

L ¼ ðl1; l2; . . . ; lpÞT and M ¼ ðm1;m2; . . . ;mqÞT. Note that

li and mi are both n-vectors containing all the 50

measurements of ith landmark and muscle endpoint,

respectively.

The CCA scheme requires that the covariance

matrices of L and M be of full rank. To remove

multicollinearities and avoid the inversion of non-full

rank matrices, we first perform PCA on L and M which

are then represented as:

L ¼ EL � X and M ¼ EM � Y; (2)

where EL and EM are the eigenvector matrices, X and Y

correspond to the low-dimensional principal data on

which CCA will be performed.

K < 0 K ¼ 0 K > 0

H < 0 Saddle Ridge Ridge Peak
H ¼ 0 Minimal Flat (None)
H > 0 SaddleValley Valley Pit

Table 2. Curvature classif|cation based on HK
map components.

FP3 FP4 FP5 FP6 FP7
saddle ridge nose tip peak peak pit
FP8 FP9 FP10 FP11 FP12
pit pit pit pit pit
FP13 FP14 FP15 FP16 FP17
peak peak peak peak peak
FP18 FP19 FP20 FP21 FP22
peak pit pit peak peak

Table 1. Curvature types of different feature
points.
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CCA extracts the correlated modes between X and Y

by seeking a set of vector pairs Ai and Bi, which yields

the canonical variates ui and vi with maximum

correlation:

ui ¼ XTAi and vi ¼ YTBi: (3)

The correlation between ui and vi can be expressed as:

ri ¼
AT

i CXYBiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AT

i CXXAiBT
i CYYBi

q ; (4)

whereCXY is the cross-covariancematrix ofX andY,CXX

and CYY are auto-covariance matrices. We then compute

the partial derivatives of ri with respect to Ai and Bi,

respectively, and set the derivatives to be zero to

maximize the correlation ri. So we have

C�1XXCXYC�1YYCYXAi ¼ r2i Ai

C�1YYCYXC�1XXCXYBi ¼ r2i Bi

�
(5)

By solving Equation (5) using singular value

decomposition (SVD), we can obtain the decreasingly

sorted correlations fr1; r2; . . . ; rrg and the correspond-

ing transformation vectors A ¼ ½A1;A2; . . . ;Ar�, B ¼
½B1;B2; . . . ;Br�. We also get the corresponding sets

of canonical variates U ¼ ½u1; u2; . . . ; ur� and V ¼
½v1; v2; . . . ; vr� via Equation (3). Therefore, the correlation

between canonical variates is maximized and hence the

predictability between ui and vi is maximized. After the

CCA transformation, a basic linear regression is then

performed in the canonical space to train the predictor

P which estimates vi from ui.

For any new face model, the whole prediction

procedure is illustrated in Figure 5, where the thicker

arrow denotes higher correlation and more important

estimation.

Kernel CCA-based
Regression

CCAmight be insufficient to extract accurate descriptors

of the data because of its linearity, whereas kernel CCA

offers an alternative nonlinear solution. It works by

mapping the original data into a higher dimensional

feature space and solving a corresponding nonlinear

version of the problem in that feature space. This

method is known as the ‘kernel trick’.

Feng et al.9 once used KCCA for mesh deformation.

They built a connection between the bone deformations

and the movement of control points. In contrast, we use

KCCA-based regression to predict muscle coordinates

from landmark positions. Furthermore, we kernelized

both the input landmark data and the output muscle

data, and compute dual bases of CCA bases for accurate

reconstruction, whereas Feng9 kernelized only the input

control points data. Given the kernelized data, the

following training procedure has a similar manner as

linear CCA regression. Interested readers can refer to

Reference 10 for more details.

Figure 5. The prediction process for a new face.

Figure 4. A portion of the training data with landmarks and muscles labelled.
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SphincterMuscle and
Skull Fitting

The sphincter muscle is modelled as a parametric

ellipsoid. We compute its centre C as the geometrical

mean of the eight landmarks around mouth. With the

ith landmark denoted as FPðiÞ, the semi-major axis a and

the semi-minor axis b are computed as

a ¼ k C� FPð7Þ k þ k C� FPð8Þ k
2

; b

¼ k C� FPð5Þ k þ k C� FPð6Þ k
2

; (6)

For better visual realism, a generic skull model is

automatically fitted within the facial mesh (see Figure 6)

using registration technique described in Reference 11,

but since we already have the facial landmarks,

we can fully automate the fitting process without

manual intervention. The constructed muscles’

origin points are then projected onto the skull and the

insertion points are attached to the original facial skin

mesh.

The muscle contraction mechanism follows Zhang’s7

method. Before animating these muscles, there are

several additional properties need to be computed, e.g.

the maximal influence angle/radius of linear muscle

and the length/width of the influence rectangle zone of

sheet muscle. The maximal influence angle of linear

muscle is a property that is independent of facial scale,

therefore we individually adopt the mean angular value

for each vector muscle from the pre-tuned models. The

other properties vary across the training models, and

depend mainly on the muscle length. A solution that

works well is to perform linear regression for each

property of each muscle with the muscle length over the

50 training examples.

Experimental Results

Prediction Accuracy

We used a set of n ¼ 50 facial models which contain

4000–5000 triangles along with their hand-tuned muscle

models to measure the prediction accuracy of our

method. Note that the 3D landmark detection as well as

the animation results can be affected by the resolution of

the polygonal face mesh, therefore a minimum number

of 1000 triangles is suggested for our method. We

adopted a leave-one-out cross validation scheme, where

at each iteration we left out one of all the facial models

as our test model, and train the mapping between

landmark positions and muscles using the remaining

models. Then we compared the ground truth locations

of the test models’ muscles with the automatically

constructed results. To measure the error of prediction,

we define the Relative Error (RE) of the ith predicted

muscle as:

REi¼MeanDistErrorðMDEÞ
MuscleLengthðMLÞ ; (7)

MDE ¼ k P
0
2i�1 � P2i�1 k þ k P02i � P2i k

2
; (8)

ML ¼k P2i�1 � P2i k; (9)

where P2i�1 and P2i are the origin and the insertion

point of the ith ground truth muscle, whereas P02i�1
and P02i are of the ith predicted muscle, respectively.

After each iteration, we can obtain a measurement

vector ðRE1;RE2; . . . ;RE23Þ of all the 23 automatically

constructed muscles.

Figure 6. The generic skull before and after fitted to the facial mesh.
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To investigate how the prediction accuracy varies as

the number of training examples increases, we carried

out the validation scheme three times using n ¼ 10; 30; 50

test examples. Figure 7 illustrates the mean values and

standard deviations of ðRE1;RE2; . . . ;RE23Þ over the n

test examples using CCA-based linear regression and

KCCA-based method, respectively. As we can see,

KCCA-based method achieved more accurate predic-

tion results than the linear method. As the number

of training examples increased, RE converged quickly,

and even as few as 30 examples resulted in small

RE.

Emotional Expressiveness

We designed and conducted a user study for evaluating

the degree to which the emotions in our synthesized

facial animation can be recognized. Six animation scripts

specifying the muscle activation data for different

emotions (anger, fear, surprise, sadness, joy and disgust)

were generated by artists. Note that our constructed

models are not only capable of representing these six

emotions, more expressions are shown in the next

section. Both the hand-tuned and automatically con-

structed multi-layer models were used to animate each

emotion on a set of 16 facial models, yielding a total

of 16 models� 6 emotions� 2 sets-of-muscles¼ 192

animation video clips.

The evaluation was carried out through a computer-

based interface, which allowed participants to watch

randomly presented video clips and label them for six

emotions. A cross-hair was displayed between consecu-

tive video clips to fixate attention and clear the mind

from previous visualization. Figure 8 shows a screen-

shot of the labelling interface.

Ten participants (five male, five female), aged

between 20 and 34, volunteered to take part in the

study, and they all have normal or corrected-to-normal

vision. Each of them completed the experiment indivi-

dually. We collected and analysed the participants’

labelling results, as shown in Figure 9. As seen in the

figure, the hand-tuned models and the constructed ones

appear to give substantially identical results. We ran a

signed-rank test on the labelling results, and the

difference was not found to be significant. Since the

experiment involved multiple raters rating multiple

categories, we computed Fleiss’ kappa12 as a measure

of inter-rater agreement. The results are both ‘almost

perfect’ agreement with values of 0.824 and 0.822 for

hand-tuned and predicted models, respectively.

Universality

Finally, we tested the universality of our method by

applying it to models of different types, including thin

and fat faces from both genders, and covering a wide

range of ages, as seen in Figure 10. We also tested our

approach with models that, in addition to a face, also

contain objects with complex geometry in the back-

ground. The results in Figure 11 show that, because we

start our processing with an appearance-based face

localization step, the faces can be correctly located and

animated without being confused by the background

clutter.
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Figure 7. (a) REs of CCA-based linear regression. (b) REs of kernel CCA-based method.

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Copyright # 2010 John Wiley & Sons, Ltd. 349 Comp. Anim. Virtual Worlds 2010; 21: 343–354

DOI: 10.1002/cav

3D ANIMATABLE FACIAL AVATARS
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *



RelatedWork
3DLandmark Detection

There are a variety of facial feature detection algorithms

operating on 2D colour and greyscale images, while

3D landmark localization is a relatively new area of

research. Several authors have proceeded by locating the

nose tip first,13,14 and determining candidates for the

remaining landmarks based on their relative locations

to the nose tip. Other authors have suggested shape

descriptors for landmark detection, e.g. Moccozet et al.15

used the multi-scale bubbles introduced by Mortara

et al.,16 Chua et al. 17 proposed point signatures as a local

descriptor, and a Gabor filter-based curvature approach

has also been attempted.18

Figure 9. Recognition rates comparison.

Figure 8. Screenshot of the labelling interface.
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Curvature features are intrinsic properties of 3D

models, Gordon,2 Li et al.,3 Colombo et al.5 and Colbry

et al.4 have all developed curvature-based techniques to

extract 3D facial landmarks. However, they all suffer

from problems caused by surface irregularities of

models. Furthermore, they depend on a pre-processing

step that identifies which part of the model is the face.

Our 2D landmark detection stage provides an excellent

initial estimate for the true landmark locations and

the curvature-based refinement step produces a better

Figure 11. Expression animated on complex character models with body or castle.

Figure 10. Expressions animated on various head models.
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refined result without running into the limitations

inherent in techniques that use only curvature infor-

mation.

Simulation-based Facial Animation

According to the recent surveys,19,20 facial animation

can be roughly classified into blend shape-based

approaches,21–25 performance-driven animation26–31 and

simulation-based approaches.7,32–38 Most approaches of

the first two categories are either in lack of visual realism

or in need of large data collection, therefore they are not

suitable for our task. For example, early performance-

driven methods26,27 have artifacts introduced by geo-

metrical warping operation, while recently developed

methods30,31 and all the blend shape approaches21–24

need large collection of facial meshes with different

extreme expressions to generate animation for just a

single person.

In contrast, although the simulation-based

approaches require substantial rigging work, it needs

only one model and provides reasonable realism by

simulating the anatomical structure of human face. In

general, there are three major categories of simulation-

based facial animation: pseudo vector muscle model,

mass-spring model and layered spring muscle model.

In this paper we employ Zhang’s7 nonlinear multi-layer

architecture as the rigging model. This is a combination

of the pseudo muscle approach with the anatomy-based

facial modelling, which significantly improves the

realism of synthetic facial expressions compared to

the earlier techniques. Note that although anatomically

accurate models have been proposed recently which

claim improvement on visual realism (see Reference 38),

they trade off real-time performance for accurate

simulation, moreover their models are too complex to

construct automatically.

Rigging

Rigging is a process analogous to setting up the strings

that control a puppet’s movement.39 The traditional

animation pipeline requires each character to be rigged

manually, making it difficult to reuse the same rig on

different characters. Recently, several methods have

been devised for simplifying the tedious and labour-

intensive rigging process.

Kähler et al.40 devised an editing interface for artists

to interactively specify muscles on 3D face geometry.

Unfortunately, expert anatomical knowledge is still

required for using this tool, whereas our goal is to

automate this procedure entirely. Orvalho et al.41

introduced a facial deformation system that reduce

artists’ effort of rigging facial models from scratch. But it

needs the artists to label the landmarks manually and

uses a sophisticated facial rig as source model. This

method sacrifices full automation to achieve more

realistic facial animation for professional applications

like films, while we trade off some realism for full

automation without the need of manual intervention or

source rigged models.

Conclusions and FutureWork

Expressive facial expression can be synthesized through

several animation techniques, but manual rigging for

facial animation is always time-consuming and labour-

intensive. In this paper, we addressed this problem by

automatically detecting 3D facial landmarks and learn-

ing themapping between landmarks and the underlying

muscles of the face. Our solution avoids the painstaking

manual rigging process which requires knowledge of

human facial anatomy. We show the usability of our

framework by building a system that allows novice

users to generate animatable avatars from 3D raw facial

geometry. Our method can be used in a wide range of

applications for common users such as in-game avatars,

chat room agents, virtual environment characters, etc.

Furthermore, our experiments have demonstrated that

our automatic facial avatar construction method is an

appropriate solution for those applications. Finally, we

believe that automatically constructing animatable

cartoon characters would be an interesting extension

to this work. Unlike the human face, cartoon characters

always deviate from the rules of facial anatomy,

therefore simulation-based animation may not be

appropriate anymore and other animation schemes

should be developed to tackle this problem.
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