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Abstract. Scientists from many different disciplines (including physiology, 
psychology, and engineering) have worked on modelling visual perception. 
However this field has been less extensively studied in the context of comput-
er science, as most of the existing perception models work only for very specif-
ic domains such as menu searching or icon searching tasks. We are developing 
a perception model that works for any application. It takes a list of mouse 
events, a sequence of bitmap images of an interface and locations of different 
objects in the interface as input, and produces a sequence of eye-movements as 
output. We have identified a set of features to differentiate among different 
screen objects and using those features, our model has also reproduced the re-
sults of previous experiments on visual perception in the context of HCI. It can 
also simulate the effects of different visual impairments on interaction. In this 
paper we discuss the design, implementation and two pilot studies to demon-
strate the model.  

1   Introduction 

Usability evaluation is an important step for successful design of any product. How-
ever user trials are often expensive and time consuming. Additionally for users with 
special needs, it is particularly difficult to get a representative population for a user 
trial. These difficulties with user trials led us to design a simulator that can model 
human computer interactions for people with a wide range of physical abilities and 
skills. In this paper we describe a particular component of this simulator - the visual 
perception model.  

Computer Scientists have studied theories of perception extensively for graphics and 
more recently, for Human-Computer Interaction (HCI). A good interface should 
contain unambiguous control objects (like buttons, menus, icons etc.) that are easily 
distinguishable from each other and reduce visual search time.  In this work, we 
have identified a set of features to differentiate among different screen objects and 
this set of features also reproduces the results of previous experiments on visual per-
ception in the context of HCI. We have developed a prototype of the model.  It can 
also simulate the effects of different visual impairments on interaction. Unlike previ-
ous works, our model not only shows how a computer interface is perceived to a 



visually impaired person, but also it can simulate the dynamics of interactions with a 
computer. 

2   Related Work 

How do we see? This question has been addressed in many ways over the years. The 
Gestalt psychologists in early 19th century pioneered an interpretation of the pro-
cessing mechanisms for sensory information [8]. Later the Gestalt principles gave 
birth to the top-down or constructivist theories of visual perception. According to 
this theory, the processing of sensory information is governed by our existing 
knowledge and expectations. On the other hand, bottom-up theorists suggest that 
perception occurs by automatic and direct processing of stimuli [8]. Considering both 
approaches, recent models of visual perception incorporate both top-down and bot-
tom-up mechanisms [14]. This is also reflected in recent experimental results in 
neurophysiology [12, 17].  

Knowledge about theories of perception has helped researchers to develop com-
putational models of visual perception. Marr’s model of perception is the pioneer in 
this field [14] and most of the other models follow its organization. However it was 
never implemented in a practical system [18]. In recent years, a plethora of models 
have been developed (e.g. ACRONYM, PARVO, CAMERA etc. [18]), which have 
also been implemented in computer systems. The working principles of these models 
are based on the general framework proposed in the analysis-by-synthesis model of 
Neisser [14] and mainly consist of the following three steps: 
 

1. Feature extraction: As the name suggests, in this step the image is ana-
lysed to extract different features such as colour, edge, shape, curvature etc. 
This step mimics neural processing at the V1 region of brain. 

2. Perceptual grouping: The extracted features are grouped together mainly 
based on different heuristics or rules (e.g. the proximity and containment 
rule in CAMERA system, rules of collinearity, parallelism and terminations 
in ACRONYM system [18]). In brain, similar type of perceptual grouping 
occurs in V2 and V3 regions. 

3. Object recognition: The grouped features are compared to known objects 
and the closest match is chosen as the output. 

 
In these three steps, the first step models the bottom-up theory of attention while the 
last two steps are guided by top-down theories. All of these models aim to recognize 
objects from a background picture and some of them have proved successful at rec-
ognizing simple objects (like mechanical instruments). However they have not 
demonstrated such good performance at recognizing arbitrary objects [18]. These 
early models do not operate at a detailed neurological level. Itti and Koch [10] pre-
sent a review of some computational models, which try to explain vision at the neu-
rological level. Itti’s pure bottom-up model [10] even worked in some natural envi-



ronments, but most of these models are used to explain the underlying phenomena of 
vision (mainly the bottom-up theories) rather than prediction.  

In the field of Human Computer Interaction, the EPIC [11] and ACT-R [1] cogni-
tive architectures have been used to develop perception models for menu searching 
and icon searching tasks. Both the EPIC and ACT-R models [4, 9] are used to ex-
plain the results of Nielsen’s experiment on searching menu items [15] and found 
that users search through a menu list both in systematic and random ways. The 
ACT-R model has also been used to find out the characteristics of a good icon in the 
context of an icon-searching task [6, 7]. However the cognitive architectures empha-
size modeling human cognition, so their perception and motor modules are not as 
well developed as others. The working principles of the perception models in EPIC 
and ACT-R/PM are quite simpler from the earlier general-purpose computational 
models of vision. These models do not use any image processing algorithms. The 
features of the target objects are manually fed into the system and they are manipu-
lated by handcrafted rules in a rule-based system.  As a result, these models do not 
scale well to general-purpose interaction tasks. Modelling of visual impairment is 
particularly difficult using these models. An object seems blurred in a continuous 
scale for different degrees of visual acuity loss and this continuous scale is hard to 
model using propositional clauses in ACT-R or EPIC. Shah et. al. [20] have pro-
posed the use of image processing algorithms in a cognitive model, but they have not 
published any results about the predictive power of their model yet. 

3.   Design 

We have developed a perception model as part of a simulator for HCI. The simulator 
takes a task definition and locations of different objects in an interface as input and 
then predicts the cursor trace, probable eye movements across the screen and task 
completion time, for different input device configurations (e.g. mouse or single 
switch scanning systems) and undertaken by persons with different levels of skill and 
physical disabilities. The architecture of the simulator is shown in Figure 1. It con-
sists of the following three components: 

The Application model represents the task currently undertaken by the user by 
breaking it up into a set of simple atomic tasks using the KLM model [5]. 
The Interface Model decides the type of input and output devices to be used by a 
particular user and sets parameters for an interface. 
The User Model simulates the interaction patterns of users for undertaking a task 
analysed by the task model under the configuration set by the interface model. It uses 
the sequence of phases defined by the Model Human Processor [5]. The perception 
model simulates the visual perception of interface objects. The cognitive model de-
termines an action to accomplish the current task. The motor-behaviour model pre-
dicts the completion time and possible interaction patterns for performing an action. 
The details of the simulator and the cognitive and motor-behaviour models can be 



found in two separate papers [2, 3]. In the following sections we present the percep-
tion model in detail. 

 

 

Figure 1. Architecture of the Simulator 

Modelling perception 

Our perception model takes a list of mouse events, a sequence of bitmap images of an 
interface and locations of different objects in the interface as input, and produces a 
sequence of eye-movements as output. The model is controlled by four free parame-
ters: distance of the user from the screen, foeveal angle, parafoveal angle and periph-
ery angle (Figure 2). The default values of these parameters are set according to the 
EPIC architecture [11]. The model can also be used to simulate the effect of different 
visual impairments. 

 

 
Figure 2. Foveal, parafoveal and peripheral vision 

 
We perceive something on a computer screen by focusing attention at a portion of the 
screen and then searching for the desired object within that area. If the target object 
is not found we look at other portions of the screen until the object is found or the 
whole screen is scanned. Our model simulates this process in three steps (Figure 3).  

 
o Scanning the screen and decompose it into primitive features 
o Finding the probable points of attention fixation 
o Deducing a trajectory of eye movement 
 

The perception model represents a user’s area of attention by defining a focus rec-



tangle within a certain portion of the screen. The area of the focus rectangle is calcu-
lated from the distance of the user from the screen and the periphery angle (Figure 
2). However it has already been found that we can see objects even which are out of 
attention (obviously with less accuracy [10]) and so the size of the focus rectangle 
varies with the number of probable targets in its vicinity. If the focus rectangle con-
tains more than one probable target (whose locations are input to the system) then it 
shrinks in size to investigate each individual item. Similarly in a sparse area of the 
screen, the focus rectangle increases in size to reduce the number of attention shifts. 

The model scans the whole screen by dividing it into several focus rectangles, one of 
which should contain the actual target. The probable points of attention fixation are 
calculated by evaluating the similarity of other focus rectangles to the one containing 
the target. We know which focus rectangle contains the target from the list of mouse 
events that was input to the system. The similarity is measured by decomposing each 
focus rectangle into a set of features (colour, edge, shape etc.) and then comparing 
the values of these features. The focus rectangles are aligned with respect to the 
objects within them [do you mean a 2D spatial alignment or a 1D ranking?].   

Finally, the model shifts attention by combining three different strategies, 
Nearest strategy [6,7]:  At each instant, the model shifts attention to the nearest 
probable point of attention fixation from the current position. 
Random Strategy: Attention randomly shifts to any probable point of fixation. 
Cluster Strategy: The probable points of attention fixation are clustered according 
to their position and attention shifts to the cluster centre of one of these clusters. 
We choose any one of these strategies probabilistically [probabilistic selection im-
plies a probability distribution. How is the cluster really decided?]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Simulating visual perception 

Pilot Studies 

Study 1- Comparing performances for colour and shape recognition 

Feature Extraction 

Probable points of attention 
fixation 

Trajectory of eye move-
ment 



In a computer screen, any target can be characterised by two properties – its colour 
and shape. In this study, we have investigated which of the features is easier to detect 
for impaired vision. We compared the reaction times people take to recognize a tar-
get from distractors of same colour and different shape and vice versa (Figure 4). 
Prior to each session, the participants were told about the target (e.g. a red circle) 
and then instructed to point to the target as soon as they could find it. We measured 
the reaction time between target display and recognition. We used nine types of tar-
gets of different colours and shapes. We recruited 10 participants (6 male, 4 female 
and average 25.4), who did not have any colour-blindness and had no visual im-
pairment that could impede their vision after correction. We simulated visual im-
pairment by using translucent filters from the Inclusive Design Toolkit [22] and 
considered four conditions (normal vision, mild acuity loss, severe acuity loss and 
central vision loss). The reaction times are shown in Figures 5.  As can be seen from 
the Figures 5, shape recognition takes more time in general and especially for severe 
acuity loss and central vision loss. With the filters (simulating vision loss), partici-
pants took more time to differentiate between target and distractors of same colour 
and different shapes than the other case and some of them even reported that they 
could not detect the corners of the shapes. 

 
Figure 4. a. Screen to test colour recognition   b.  Screen to test shape recognition 
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Figure 5. Variations of reaction time (in msec) for different impairments. 

Guided by this study, we developed algorithms to simulate the process of colour and 
shape recognition. We used colour histogram matching algorithm [16] to measure 
and compare the colours, the Sobel operator [16] for edge detection and the shape 
context algorithm [21] for shape measurement. We simulated severe acuity loss by a 
low pass Gaussian filter. We found that the colour histogram matching algorithm 
works well even for a blurred screen; however the shape context matching algorithm 
does not. In particular, the edge detection algorithm, which is run before the shape 



context algorithm, fails to detect edges in a blurred screen. This is also consistent 
with the result we found in the study: with blurred vision people take more time to 
detect edges and thus to differentiate shapes from one another. However the colour 
information is not lost by blurring (as long as the colours contrast with background) 
and the colour-histogram matching algorithm finds it easier to recognize colour in 
the same way as the human participants. These results can be extended in future to 
predict reaction time from the colour histogram and shape context matching coeffi-
cients. 

Study 2- Defining the best set of features to predict the probable points of fixation 
The second study considered the best set of features to predict the probable points of 
fixation. For the pilot study, we assumed that in a screen, users’ attention would fix 
on icons, which were same as the target icons instead of other types of icons. For 
example, if the target was a pdf file then attention would mostly be fixed on the pdf 
icons in the screen. We considered seven different types of icons (Figure 6) and 
looked for the best classification performance for different feature subsets. We used a 
backpropagation neural network as classifier. Figure 7 shows the classification per-
formance for 15 different subsets of the Colour in RGB, Colour in YUV, shape and 
edge features. The error bars show the standard deviation for 30 runs for the best 
classifier parameters. As can be seen from Figure 7 the best results are obtained for 
the Colour (YUV), shape and edge features.  

 

 
Figure 6. Icons used in pilot study 

 



 
Figure 7. Classifier performance for different feature sets 

Validation 
 
We do not yet have eye-tracking data of our own, so we compared the performance of 
our result to some previous eye-tracking data [6,7]. Figure 8 shows the actual eye-
tracking data of a previous experiment (Figure 8a), performance of the previous 
model (Figure 8b) and the performance of our model (Figure 8c). It can be seen that 
our model successfully identified all the probable points of fixation. 

 

 
a. Eye tracking data [from 6, 7] 



 
b. Eye movement prediction from previous model [6, 7] 

 
c. Eye movement prediction from our model  

Figure 8. Validating the model 

Modelling visual impairment 

Our model can also simulate the effects of different visual impairments on interac-
tion. To cover a wide range of visual impairments, we had three-level model. The 
first level simulates different diseases (currently Macular Degeneration, Diabetic 
Retinopathy, Tunnel vision and Colour-Blindness). The next level simulates the 
effect of change in different visual functions (e.g. Visual acuity, Contrast sensitivity, 
Visual field loss etc.). The last level allows different image processing algorithms to 
be run (e.g. Filtering, Smoothing etc.) on input images to manually simulate the 
effect of a particular impairment. This approach also makes it easier to model the 
progress of an impairment. The previous simulations on visual impairments model 
the progress of impairment by a single parameter [22, 23] or using too much pa-
rameter [24] [I couldn’t understand what you mean by too much parameter].  In our 
system, the progress of any impairment can be modelled either by a single parameter 
or by changing the values of different visual functions. For example, the extent of a 
particular case of Maccular [Is this with double c or single c?] Degeneration can be 
modeled either by a single scale or by using different scales for visual acuity and 
central visual field loss. Additionally, most previous work (like the Visual Simulator 
Project [23] or the Inclusive Toolkit project [22]) simulate visual impairment on still 



images for a fixed position of eyes. Unlike this previous work, our model not only 
shows how a computer interface is perceived to a visually impaired person, but it can 
also simulate the dynamics of interactions with a computer.  Figure 9 shows a few 
demonstrations of our simulator. In all these figures, the desired target is marked 
with the text ‘Target’ written in red. The black line indicates the trajectory of eye 
movements through a series of intermediate points of attention fixation marked with 
yellow rings. 

 

 
a. Eye movement prediction for Maccular Degeneration 

 
b. Eye movement prediction for Diabetic Retinopathy 

 
c. Eye movement prediction for Tunnel Vision 

 
Figure 9. Eye movement prediction for different visual impairments 

 
Figure 9a shows a sequence of eye movements for Maccular Degeneration. As can 
been seen from the figure, the whole screen becomes blurred since the patient is 
using peripheral vision and black spots appear in the centre of point of fixation due 



to central field loss. In case of Diabetic Retinopathy (Figure 9b), some random black 
spots appear at the region of attention fixation due to blockage of blood vessels inside 
the eyes. In both of these cases the number of points of fixation is greater than in 
normal vision (Figure 8) since patients need to investigate all blue targets due to 
blurring of the screen. For tunnel vision (Figure 9c), the patient cannot use any pe-
ripheral vision, so he never sees the screen as a whole and can only see a small por-
tion of it. So all targets need to be examined and eyes have to move systematically 
from left to right and top to bottom until the target is reached.   

Discussion  

The first study qualitatively proves the credibility of colour histogram and shape 
context algorithms to model colour and shape recognition processes for both normal 
and impaired vision. The second study shows that they can also be used to identify 
icons besides primitive shapes (with more than 90% accuracy). Table 1 presents a 
comparative analysis of our model to that of ACT-R/PM and EPIC models. Our 
model seems to be more accurate, scalable and easier to use than the existing models. 
However, in real life situations the model also produces some false positives because 
it fails to take account of the domain knowledge of users. This knowledge can be 
either application specific or application independent. There is no way to simulate 
application specific domain knowledge without knowing the application beforehand. 
However there are certain types of domain knowledge that are application independ-
ent and apply to almost all applications. For example, the appearance of a pop-up 
window immediately shifts attention in real life, however the model still looks for 
probable targets in other parts of the screen. Similarly, when the target is a text box, 
users focus attention to the corresponding labels rather than other text boxes, which 
we do not yet model. There is also scope to model perceptual learning. Currently our 
neural network (used as a classifier) trains itself after each execution, but there is no 
way to remember a particular location, which would be used for the same purpose as 
before [I couldn’t quite understand the argument in this sentence]. For that purpose, 
we could consider some high level features like the caption of a widget, handle of the 
application etc. to remember the utility of a location for a certain application. These 
issues did not arise in previous works since they used very specific and simple do-
mains to model [4, 6, 7, 9].  

We are still not in a position to assert that our model actually outperforms previous 
models. Currently we are working on an experiment to track users’ gaze while they 
try to recognize a target from a real life application (besides primitive shapes). We 
will simulate impairment using filters as our first study. Then we will try to predict 
the points of attention fixation and eye movements using our model. We are also 
working to predict the visual search time using the EMMA model [19], which will 
also help in evaluating the model. 



Table 1.  Comparative analysis of our model 

 ACT-R/PM or 
EPIC models 

Our Model Advantages of our 
model 

Storing 
Stimuli 

Propositional 
Clauses Spatial Array Easy to use and 

Scalable 
Extracting 
Features Manually Automatically using Image 

Processing algorithms Full automation 

Matching 
Features 

Rules with binary 
outcome 

Image processing algorithms 
that give the minimum 

squared error 
More accurate 

Modelling 
top down 

knowledge 

Not relevant as 
applied to very 

specific domain. 

Considers the type of target 
(e.g. button, icon, combo box 

etc.). 

More detailed and 
practical 

Shifting 
Attention 

Systematic/ Ran-
dom and 

Nearest strategy 

Clustering/ Nearest /Random 
strategy 

Not worse than previ-
ous, probably more 

accurate 

Conclusions 

In this paper we have presented a perception model that can be used to evaluate and 
compare the visual feedback provided by different computer interfaces. The model is 
part of a larger system that is used to evaluate interfaces with respect to a wide range 
of skills and physical abilities [2, 3]. Our perception model takes a list of mouse 
events, a sequence of bitmap images of an interface and locations of different objects 
in the interface as input, and produces a sequence of eye-movements as output. The 
model supports existing theories on visual perception and it can also explain the 
results of most of the experiments done on visual perception in the field of Human-
Computer Interaction. The model can also simulate the effect of different visual 
impairments on interactions. Unlike previous work, our model not only shows how a 
computer interface is perceived to a visually impaired person, but also it can simulate 
the dynamics of interactions with a computer. Currently we are in the process of 
calibrating the model using an eye-tracker.  
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