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ABSTRACT
Current sketch recognition systems treat sketches as images
or a collection of strokes, rather than viewing sketching as an
interactive and incremental process. We show how viewing
sketching as an interactive process allows us to recognize
sketches using Hidden Markov Models. We report results of
a user study indicating that in certain domains people draw
objects using consistent stroke orderings. We show how this
consistency, when present, can be used to perform sketch
recognition efficiently. This novel approach enables us to
have polynomial time algorithms for sketch recognition and
segmentation, unlike conventional methods with exponential
complexity. 1

Categories and Subject Descriptors: I.5.5 Pattern Recog-
nition: Interactive Systems

General Terms: Algorithms.

Keywords: Sketch recognition, Enabling input technolo-
gies, Interpretation of user input, Intelligent user interfaces

1. INTRODUCTION
Sketching is a natural input modality of increasing in-

terest [5]. Our goal is to build systems that can recognize
complex objects, and as a step towards this goal, we pro-
pose a novel approach to symbolic sketch recognition that
takes advantage of the incremental and interactive nature of
sketching.

By a sketch, we mean messy, informal, hand-done draw-
ings (e.g., Fig. 1). Specifically we are interested in recogniz-
ing sketches of objects that can be described and recognized
using structural methods. This is the class of sketches that
has been the focus of the sketch recognition community [2,
3, 8, 7]. Sketch recognition involves grouping strokes that
constitute the same object (segmentation) and determining
the object class for each group (recognition).

We view sketching as an incremental process, defining a
sketch as a sequence of strokes. Strokes are captured using
a digitizer, preserving the drawing order. We use the term
sketching style to refer to a user’s preferred – although
not necessarily conscious – stroke ordering when drawing an
object.

1More details on this work is available at:
http://www.rationale.csail.mit.edu/publications.shtml
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1.1 The problem
Current sketching systems are indifferent to who is using

the system, employing the same recognition routines for all
users. The framework we introduce in this paper provides
a mechanism for capturing an individual’s preferred stroke
ordering during sketching, and uses it for efficient segmenta-
tion and recognition of hand-sketched objects in polynomial
time.

2. APPROACH
Our approach is differentiated from work on images by

the need to deal with the dynamic character of sketches
(i.e., sketches are constructed one stroke at a time). We
believe stroke ordering information can be a powerful aid
to recognition because we believe that people have strong
biases in the way they sketch. We ran a user study to assess
the degree to which people have sketching styles.

2.1 User study
In our study, users were asked to sketch various icons,

diagrams and scenes such as emoticons expressing happy,
sad, surprised, angry faces, scenes with stick-figures, mil-
itary Course of Action Diagram symbols, finite state ma-
chines, Unified Modeling Language (UML) diagrams, and
digital circuit diagrams.

We asked 10 subjects to sketch three sketches from each of
the six domains, collecting a total of 180 sketches. Our anal-
ysis of the collected data revealed that in these domains peo-
ple indeed sketch objects in a highly stylized fashion using
predictable stroke orderings. These orderings may be differ-
ent for each individual, but persist across sketches for each
individual. In order to capitalize on this structure we used
Hidden Markov Models (HMMs) to model different sketch-
ing styles.

3. HMM-BASED RECOGNITION
After each stroke is added, we encode the new scene as a

sequence of observations. Recognition and segmentation is
achieved by aligning to this observation sequence a series of
HMMs, while maximizing the likelihood of the whole scene.
Each HMM models the drawing order of a single class of
objects.

Using HMMs gives us the ability to learn compact mod-
els of how single objects are drawn and allows us to have a
probabilistic score for computing how well individual object
models match a particular subsequence of an observation
sequence encoding a complete scene. Recognition and seg-
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mentation is achieved by combining matching scores from in-
dividual HMMs in a mathematically sound way. Our frame-
work supports multiple object classes, multiple drawing or-
ders, and can handle variations in the lengths of encodings
for individual objects.

A review of HMMs is outside the scope of this paper and
we refer the reader to a comprehensive tutorial by Rabiner
[1]. We adopt the same notation in this paper.

3.1 Modeling with HMMs

3.1.1 Encoding
Sketches must be encoded to generate observation se-

quences for recognition. We encode strokes using the Early
Sketch Processing Toolkit described in [2], which converts
strokes into geometric primitives. We encode the output of
the toolkit to convert sketches into discrete observation se-
quences using a codebook of 13 symbols; four to encode lines
(positively/negatively sloped, horizontal/vertical), three to
encode ovals (circles, horizontal/vertical ovals), four to en-
code polylines (with 2, 3, 4, and 5+ edges) one to en-
code complex approximations (i.e., mixture of curves and
lines), and one symbol to denote two consecutive intersect-
ing strokes.

3.1.2 Segmentation and recognition
Assume we have n object classes. Encodings of train-

ing data for class i may have varying lengths, so let Li =
{li1, li2, ...lik} be the distinct encoding lengths for class i.
We train one HMM per object class using encodings of in-
dividual objects as examples.

For isolated object recognition, we compute P (O|λi) for
each model λi using the Forward procedure with the obser-
vation sequence O generated by encoding the isolated object.
λi with the highest likelihood gives us the object class. Un-
fortunately, isolated object recognition requires the input
sketch to be presegmented, which is usually not the case,
and segmentation is itself a hard problem.

Interpretation of a complex scene requires generating hy-
potheses for the whole scene. That is, it requires assigning
models to subsequences of the entire observation sequence
that encodes the scene, such that the interpretations as-
signed to individual groups don’t conflict with each other
and also they maximize the likelihood of the whole scene
(thus generating a globally coherent interpretation).

Hypothesis generation should be efficient, so combinatoric
approaches are ruled out. The fact that individual HMMs
return probability values makes it easy to define the ob-
jective for this stage, namely, choose interpretations that
maximize the probability corresponding to the entire scene.
This is an optimization problem that we solve using dy-
namic programming implemented in the form of a shortest
path problem.

The shortest path in a graph G(V, E) that we generate
gives us the segmentation. We then perform classification
as described above. Segmentation and recognition begins by
building the graph G(V, E) such that V consists of |O| ver-
tices, one per observation, and a special vertex vf denoting
the end of observations.

Starting with O1, for each observation symbol Os, we
take a substring Os,s+k for k ∈ Li. Next we compute the
loglikelihood for the observation given the current model,
log(P (Os,s+k|λi)), and add a directed edge from vertex

vs to vertex vs+k in the graph with an associated cost of
|log(P (Os,s+k|λi))|. We augment each weight in the graph
with a term that accounts for the probability that Os,s+k is
the encoding of a complete object. This is achieved by penal-
izing edges corresponding to incomplete objects, by testing
whether the observation used for that edge puts λi in one
of its final states using the ending probabilities estimated
offline. If the destination index s + k exceeds the index of
vf , instead of trying to link vs to vs+k, we put a directed
edge from vs to the final node vf . We set the weight of the
edge to |log(P (Os,|O||λi))|. Here Os,|O| is the suffix of O
starting at index s. This allows us to do recognition when
the scene is not yet complete and is a major strength of our
approach. We complete the construction of G by repeating
this operation for all models.

In the constructed graph, having a directed edge from ver-
tex vi to vj with cost c means that it is possible to account
for the observation sequence Oi,j with some model with a
loglikelihood of −c. The constructed graph may have multi-
ple edges connecting two vertices, each with different costs.
By computing the shortest path from v1 to vf in G, we
minimize sum of negative loglikelihoods, equivalent to max-
imizing the likelihood of the observation O. The indices of
the shortest path gives us the segmentation. Classification
is achieved by finding the models that account for each com-
puted segment.

A nice feature of the graph-based approach is that while
the shortest path in G gives us the most likely segmentation
of the input, we can also compute the next k-best segmen-
tations using a k-shortest path algorithm. This information
can be used by another algorithm for dealing with ambigu-
ities or by the user, as done in speech recognition systems
with n-best lists.

4. EVALUATION

4.1 Evaluation of the HMM-based recognition
Our first experiment was aimed at measuring the suit-

ability of our approach for sketch recognition and observing
its behavior with test data containing clutter in the form of
spurious strokes or unknown objects.

We trained models with 10 states for 10 objects from the
domains of geometric objects, military course of action di-
agrams, stick-figure diagrams, and mechanical engineering
drawings. Training data was sketched using up to 6 styles
with 10 examples per style. For a separate test set of 88
objects, we achieved a 96.5% recognition rate (see Fig. 1 for
an example scene).

We also tested our method with sketches that include neg-
ative examples to measure its robustness in presence of un-
known objects and spurious strokes. Two classes of nega-
tive examples were obtained by randomly inserting strokes
selected from other sketches, and by simulating the effects
of common low level recognition errors. We observed that
69% of the time, spurious strokes caused misrecognitions
that were bounded to objects immediately preceding or fol-
lowing the source of error. For low level errors, this rate was
78%. This implies that effects of errors usually remain local.

4.2 Running time comparison to a baseline
method

To serve as a baseline, we implemented a feature-based
recognizer of the sort used in [7, 3, 8]. The baseline method
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Figure 1: An example input for our stem, and the
system’s recognition indicated by labels. The scene
contains with two course of action diagram symbols,
a rectangle and a stick-figure.

Figure 2: Running times for the baseline feature-
based recognition system and our HMM-based
recognition system.

is symbolic and feature-based. We ran the baseline system
on scenes containing up to 5 objects (rectangles or stick-
figures in this case). To avoid stroke orderings that are un-
usually ambiguous for the baseline method, we measured
the mean recognition times for different drawing orders. We
started the experiment with a scene containing a single rect-
angle, and in an alternating manner, we added either a stick-
figure or a rectangle to get a new scene. We repeated the
experiment with up to 5 objects (three rectangles, two stick-
figures). Fig. 2 shows the average times for increasing num-
ber of objects for the baseline and our system on a Pentium
III 933 MHZ Windows XP machine with 512M of RAM. As
seen in Fig. 2, the HMM-based method scales very well with
increasing number of objects. These results show how valu-
able drawing order information can be when users sketch in
predictable orders.

5. RELATED WORK
Work in [3] and [8] describe grammar-based statistical ap-

proaches to sketch recognition, while [4] presents a technique
for generating bottom-up recognizers from object descrip-
tions that perform exhaustive search. Our work naturally
complements these systems.

Work in [6] describes an HMM based sketch interpretation
and refinement system, though this system requires objects
to be drawn using single strokes. Scenes are recognized by
looking at spatial relationships of consecutive strokes.

Our system also differs from numerous sketch recognition
systems by its ability to do recognition with only polynomial
time and space complexity, and by its utilization of drawing
order for capturing and modeling user sketching styles.

6. FUTURE WORK
We are investigating alternative HMM setups (number

of states, topology, encoding schemes) and exploring ways
of inducing HMM properties by applying Bayesian model
merging techniques. We are also interested in exploring hi-
erarchical HMMs to capture inter-object correlations.

We are currently developing a new HMM architecture that
integrates our system with a model based sketch recognition
architecture, which will allow two approaches to share hy-
potheses and help each other.

We believe the HMM framework is also appropriate for
learning editing operations (e.g., deletion, selection) if cor-
responding observations are supplied during training.

7. SUMMARY
We have showed how viewing sketching as an interactive

process allows us to model and recognize sketches using Hid-
den Markov Models. We presented results of a user study in-
dicating that in certain domains people have preferred ways
of drawing objects. We illustrated how the consistent order-
ing of strokes naturally preferred by users can be exploited to
build models for individual users and perform sketch recog-
nition efficiently, without restricting the users to sketch in a
certain way.
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