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Signal Models...

*Are used to characterize real world
signals.

*Provide a basis for a theoretical
description of a signal processing system.

*Tell about the signal source without
having the source available.

*Are used to realize practical systems
efficiently.



2 Types of Signal Models:

eDeterministic Models:
- Specific properties of the signal are known.
eg. The signal 1s a sine wave
- Determining values for parameters of the signal, such as
frequency, amplitude, etc 1s required.

Statistical Models:
- eg. Gaussian processes, Markov processes, Hidden Markov
processes
- Characterizing the statistical properties of the signal 1s
required.

- Assumption:
* Signal can be characterized as a parametric random process.
* Parameters of the random process can be determined in a
precise and well defined manner.



Discrete Markov Processes

022 * The system is described by N distinct
states: SI,SZ...SN

*The system can be in one of these
states at any time.
« Time instants associated with state

changes are: t=1, 2, ...
« Actual state at time t 18 q,

*Predecessor states must also be known
for the probabilistic description.
e a_'s are state transition probabilities.

Fig. 1. A Markov chain with 5 states (labeled 5; to S5) with i
selected state transitions. [1]

Assuming discrete, first order Markov Chain, the probabilistic
description of this system is:

P[qt — SJ | qt_l — Siﬂ qt—2 — Sk? ° "] — P[qt — SJ | qt—l = Sl]



A 3 State Example for Weather

e States are defined as: _ -
0.4 0.3 0.3

- State 1: rainy/snowy A=1{a}) =02 06
- State 2: cloudy I Do
0.1 0.1 0.8 |

- State 3: sunny
* The weather at day t should be in one the states above.
e State transition matrix 1s A.

e a,'s represent the probabilities of going from state 1 to j.

* The observation sequence 1s denoted with O.
- Say for t=1, sun 1s observed. (initial state)
- Next observation: sun-sun-rain-rain-cloudy-sun
-0={S,S,S,S,S,S.,S}
corresponding to
t=1,2,3,4,5,6,7,8



I A 3 State Example for Weather

* The probability of the observation sequence given the
I model 1s as follows:

P(O|Model) = PIS;, S5, S3, S, S1, S5, Sy, S3|Model]
= P{S3] - PIS;|S3] - PIS3|S;] - PIS4|Ss]

* PS1]S1] - PIS3|S4] - PIS,|Ss] - PIS5|S))
= W3t dy tdycdy Cdncodgyc dyptdp
=1 - (0.8)(0.8)(0.1)(0.4)(0.3)(0.1)(0.2)
= 1.536 x 107*

where we use the notation

T, = Plgy = 5], 1T=i=<=N

here, T.'s are the initial state probabilities.



Hidden Markov Models

* In Markov Models,

states corresponded to observable/pyhsical events.

* In Hidden Markov Models,

observations are probabilistic functions of the state.

- So, HMMs are doubly embedded stochastic processes.

- The underlying stochastic process 1s not observable/hidden.
It can be observed through another set of stochastic processes
producing the observation sequences.

(ie., in Markov Models, the problem is finding the probability of the
observation to be in a certain state,

in HMMSs, the problem is still finding the probability of the observation to be
in a certain state, but observation is also a probabilistic function of the
state. )

eg. Hidden Coin Tossing Experiment, Urn and Ball Model



Elements of an HMIM

e N: # of states
Individual states: S={S , ..., S_} State at time t: q,

e M: (# of distinct observation symbols)/state
ie. discrete alphabet size in speech processing
eg. heads & tails 1n coins experiment
individual symbols: V= {v v, .., v }
e A: State transition prob. distribution
al] =P[q, =S,/ q=S]] where ]l <=1,j<=N
* B: the observation symbol probability distribution in state |
B = b (k) where b (k) = P[v, at t|q=S.] where '*'*"
eg. The probability of heads of a certain coin at time t.
- m={m } Is are the initial state distribution.

e m.=P[q, =S ]where 1=i=N

4% Given N, M, A, B, 1, HMM can be generated for O.
« O : Observation sequence O =0,,0,, ... ,0,. O 'sare one of v's. T is #

of total observations.



Complete specification of an HMM
requires:

* A,B.n: probability measures
* N and M: model parameters
* O: observation symbols

HMM notation: A (A,B ,n)



I Three Fundamental Questions
| in Modelling HMMs

Given Observation sequence: O =0, 0O, ... O
HMM model: A (A,B,n)

How to compute P(O|A)?
2) Uncover Problem:
Given Observation sequence: O=0, O, ... O

HMM model: A (A,B,n)

How to choose corresponding optimal state seq. 0=q q....q,7

T

I 1) Evaluation Problem:

T

3) Training Problem:
How to adjust parameters A, B, to maximize P(O|A)?



Solution for Problem 1

P(O|N)=?
Enumerate every possible T length state sequence.
eg. Assume fixed Q=qlqg2.......... qT

.
P(O|Q, N) = ET P(Olq,, N)

POIQ, N) = by (Oy) - be(O,) - - - b (Oy).

Unfeasible
P{Q|M = I‘?‘a?t‘i‘:al?z% T a‘?r—1‘-ﬁ‘ o o
computation time!
PO = 2 POIQ, N PN On order of 2T.NT
= L wgbg(O9) ag,q,bg(O)

LT P IR

o a'?r—*lq;rb'?r(QT}‘



Solution for Problem 1

Forward-Backward procedure

Forward variable:
o (1)=P(O,0.....0,q=S/[A)
(prob. for partial observation sequence O,...O, ending at state S_at time t, A)

Inductive Solution!

&'1{” = ﬂ';b,‘{Oﬂ, 1T=i=N.

N Computation time:
agsalf) = [;‘-Et ﬂr(”ﬂi;]b;(omﬂr 1=t=T-1 On Order Of N2T

1<j=<N.

M
P(OIN = 21 arli).
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Backward Variable:
B t(i)=P(Ot+1Ot+2...OT|qT=Si,)\)

(probability of the partial observation sequence from t+1 to end, given state Si at time t, A)

Inductive Solution!
Computation time:

Bid =1, 1=i=A. On order of N°T

N
Bi) = E a;ib(Oy 4 1) Brrlf),

t=T-1,7-2---,1,1T=i=N.



Solution for Problem 2

* Aim 1s to find an optimal state sequence for the
observation.

* Several solutions exist.

* Optimality criteria must be adjusted.

eg. states individually most likely at time t.
maximizes expected # of correct individual states.



A posteriori probability variable v:
Y (1)=P(q=S[O,»)
(probability of being in state S, at time t given observation sequence O and A)

Tli) =Plg, =i | 0,X) R
- POg =i X EII

P(O | A)
- PO, =i}

= _

> POq=i|N

=]

i) = ari) BAi) _  ali) Bili) - o .
PIOIN) % i) B P(OIA) 1s normalization factor to make sure sum of y(i)'s equals 1
="

Individually most likely state g, at time t:

q, = argmax [y(i), 1=t=<T. Problem:
o This equation finds the most likely state at each
t regardless of the probability of occurrence of
states, so the resulting sequence may be invalid.



Possible solution to the problem above:
Find the state sequence maximizing pairs or triples
of states

OR

Find the single best state sequence
to maximize P(Q|O,A)
equivalent to maximize P(Q,O|A)



Viterbi Algorithm

Aim: to find the single best state sequence Q=1{q.q,...q,}
for given observation sequence O={0,0....0_}

o,f) = max Plgrgz = - g =1, 070y -+ - OA]

Define 6; 3G

(the best score, ie. highest probability along a single path, at time t)
(accounts for the first t observations, ends 1n state S1)

6, ¢ 4lf) = [max &,(i)a,] - blO, ).

For each t and j, must keep track of argument maximizing above equation.

Use array v ())



Viterbi Algorithm

To find the best state sequence: eJust like forward procedure.

1. Initialization e But finds max instead of summation.
e ¢ Keeps track of maximizing points

6|[.I'] = ﬂ';b,‘{D1L 1=i=N

Yili} = 0.

2. Recursion
Glj) = max {E,A,{j}a;f-]b,-{(},], 2=t=T

1sr=N

vilj) = argmax [6,_;(i)a;], 2=sts=sT

T=i=N

3. Termination
P* = max [6;(i)]

T=i=z=N

qF = argmax [ﬁ',r{”]-

T=izs N

4. Path/State Sequence Backtracking

{I:sz:w{q:n}. t=T7T-1,T-=-2,--+,1.



Solution for Problem 3

Aim: Adjusting A, B, n to maximize the probability of the
training data.

Choose A (A,B,n) such that P(O|A) is locally maximized
using:

Methods:
* Baum-Welch Method

* Expectation-Modification (EM) Method
* Gradient Techniques



Baum-Welch Method

Define Variable ¢:

(1)) =P (9=5,9,,,=S|OA)

(the probability of being in state Si at t, in Sj at t+1,
given observation and model)

. . . . . , P{,:;', ,|+=',ﬂ.."l.]
The path satisfying this condition: 6= = ;;ﬂu ;.L;l |

ol ﬂr';'b;'{or +1) Beaal))
PIOIN)

ﬂ';(” af,f'bfl:ﬂl"""} E{ + I{_”'

&, j) =

NN
2 2 afi) ayb,(Or ) Byarl))

i=1;=1

Relate to y:

N
T+ 1+2 vil) = 2 £, )
-




Baum-Welch Method

-1

Expected number of transitions made from state Siin O: 'y’

Expected number of transitions made from state Sito Sjin O: vy i

Reestimation formulas for A,B.x :

w; = expected frequency (number of times) in state §; at time (t = 1) = (i)

_  expected number of transitions from state §; to state 5,

& = expected number of transitions from state §;
=1
& i)
=1
r§1 v}
Ej.ik} _ expected number of times in state j and observing symbol v;

expected number of times in state |



Baum-Welch Method

Current Model: A (A,B;x)

Reestimation Model: A (A, B, n,)

Either;
1) A defines critical point of the likelihood function, where A=A
2) model A is more likely than A

in the sense P(O|A)>P(O|A)

So A is the new model matching the observation sequence better.

Using A as A iteratively and repeating reestimation calculation,
improvement for the probability of O being observed in model is
reached.

Final result is called a maximum likelihood estimate of the HMM.




Baum-Welch Method

Reestimation formulas can be derived by
maximizing Baum's auxiliary function over x:

QM N = %]P[C!lf), N log [P(O, QM)

Proved that maximizing Q(A, x) leads to increased
likelihood.

max [Q(, Nl = P(O]X) = P(O|A).
1

Eventually likelihood function converges to a
critical point.



Baum-Welch Method

Stochastic constraints are satisfied in each reestimation
procedure:

i
2 T =
F=

I-‘lI

2a,=1 1sisN
j=1

M

L biky=1 1=<j=<N
k=1 '

Also, Lagrange multipliers can be used to find =.a,b (k)
parameters maximizing P(Ol|A)

(Think of the parameter estimation as a constrained optimization
problem for P(OJ|A), constrained by above equations)



I Using Lagrange Multipliers;

Manipulating these equations, 1t can be shown that
reestimation formulas are correct at critical points of

P(O[)



Types of HMMs

So far, considered only ergodic HMMs:
Ergodic Model:
Every state transition 1s possible. a.'s positive.

Left-Right (Bakis) Model:
As time 1ncreases, state index increases or stays the
same. 1€. states proceed from left to right.

ag=0, j<i

0, i #1 — =
= [ ) 11 12 i 0
1, i =1
1 4 pp dyy Ay

any =1 ay =0, j>i+A

o o o
= = W B
o oW oW &




Continuous Observation
Densities in HMMs

 Finite alphabet up to now.
e Observations are continuous signals/vectors.
e General representation of the pdf:

M
biO) = 2 mMO, i, Ui, 1<j<N
o= )

e O: vector being modeled
© Cp mixture coeff. for m™ mixture in state j

« 9log concave/elliptical symmetric density (eg. Gaussian) mean: . , cov: U, |

°C. should satisty Yot 1zren



Continuous Observation
Densities in HMMs

Reestimation formulas:

T

. T T
_ Zwhk > vdj, k) - O, oyl k) - (0 = )0, —
Ck = 7w ., = =1 U, = =1
5 % i k PRI " ’
R Yilf, k) Z‘I velj, k) > 1l f, k)
!=

t=1

v,(j.k) prob. Of being in state j at time t with k™
mixture component accounting for O,

¥ U k} _ c‘t{,” ﬂr(,f} Clrkm{orr ]-",rlcr Uf-l:}
ATl - W M :
E! adj) B j) A Cim MU, Wyms U)




Autoregressive HMMs

 Particularly applicable to speech processing.
e Observation vectors are drawn drom an
autoregression process.

e Observation vector O: (X,X,,....X, )

e Ok's are related by: o.--$:0.+e
where € , k=0, 1, 2, 3, ..., p are Gaussian,

independent, 1dentically distributed rv. with zero
mean, variance o>
«a, 1=1,...,p are predictor (autoregression)

coefficients.



I Autoregressive HMMs

I e For large K, density function O 1s approximately:
flO) = (270) ¥ exp g— ﬁ 5(0, a}E

P _ P _
50, a) = r,(0) (0 + 2 2 r,0i) r(i) radi) = Eﬂ andny; @=N1=i=p

K-—-1-=1
a =[1,a,a, -, al rii) = Lﬂ XoXnsi 0=i=np
n=

* (1) autocorrelation of observation samples
e 1 (1) autocorr. Of autoreg. coett.s



Autoregressive HMMs

 Total prediction residual a 1s
o = I-':_g; (E,:IEJ = Ko*
o~ 18 variance per sample of error signal.
* Normalized observation vector: = ,

\.";1; B VKo’

eSamples xi's are divided by (normalized by
sample variance)

X 20\ N2 K .
6 = ( o) _
(O} X exp ( 2 50, aJ).



Autoregressive HMMs

Using Gaussian autoregressive density, assume the mixture density:

A

B(O) = X ¢;mbm(O)

m=1

Each b, (O) is denstiy with autoregression vector ajm (or autocorr.vector r_. )
jm ajm
25\ 2 K
brm{ﬂ:l = (_ﬂ:_) exp [— E (0, a,-,.,}}

Reestimation formula for sequence autocorrelation r(i) for the jth state, kth mixture

component: .
E Tr{jr k} L

= _ I=1
rﬂc =

-
2 ydj, k)
=1

Where yt(j,k) is the prob. of being in state j at time t, using mixture component k,

vilj, k) = adf) By j) kb (Oy)
v fr N M *
2ol Bl || B cubl)




Null Transitions

NULL Transitions:

Observations are associated with the arcs of the
model.

Used for transitions which makes no output. (Jumps
between states produce no observation)

Eg: a left-right model:

s e i
¢ ¢ o ¢

It 1s possible to omit transitions between states and
conclude with 1 observation to account for a path
beginning 1n state 1, ending in state N.



Tied States

*Equivalence relation between HMM
parameters 1n different states.

o## of iIndependent parameters in model 1s
reduced.

*Used 1n cases where observation density 1s
the same for two or more states. (eg in speech
sounds)

*Model becomes simpler for parameter
estimation



More...

e Inclusion of Explicit State Duration Density in
HMMs
e Optimization Criterion
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Thanks for Listening!




