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Signal Models...

●Are used to characterize real world 
signals.

●Provide a basis for a theoretical 
description of a signal processing system.

●Tell about the signal source without 
having the source available.

●Are used to realize practical systems 
efficiently.



2 Types of Signal Models:

●Deterministic Models:
- Specific properties of the signal are known.

eg. The signal is a sine wave
- Determining values for parameters of the signal, such as 

frequency, amplitude, etc is required.

●Statistical Models:
- eg. Gaussian processes, Markov processes, Hidden Markov 

processes
- Characterizing the statistical properties of the signal is 

required. 
- Assumption:

* Signal can be characterized as a parametric random process.
* Parameters of the random process can be determined in a 

precise and well defined manner.



Discrete Markov Processes
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● The system is described by N distinct 
states: S
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●The system can be in one of these 
states at any time.

●

 
Time instants associated with state 

changes are: t = 1, 2, …
● Actual state at time t is q

t

●Predecessor states must also be known 
for the probabilistic description.

● a
ij
's are state transition probabilities.

Assuming discrete, first order Markov Chain, the probabilistic 
description of this system is:

P[q
t
 = S

j
 | q

t-1
 = S

i
, q

t-2
 = S

k
, …] = P[q

t
 = S

j
 | q

t-1
 = S

i
]



A 3 State Example for Weather

● States are defined as:
- State 1: rainy/snowy
- State 2: cloudy
- State 3: sunny

● The weather at day t should be in one the states above.
● State transition matrix is A.
● a

ij 
's represent the probabilities of going from state i to j.

● The observation sequence is denoted with O.
- Say for t=1, sun is observed. (initial state)
- Next observation: sun-sun-rain-rain-cloudy-sun
- O = {S
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corresponding to
t=1,2,3,4,5,6,7,8



A 3 State Example for Weather

● The probability of the observation sequence given the 
model is as follows:

 

here, π
i
's are the initial state probabilities.



Hidden Markov Models

* In Markov Models, 
states corresponded to observable/pyhsical events.

* In Hidden Markov Models,
observations are probabilistic functions of the state.

   
      - So, HMMs are doubly embedded stochastic processes.

- The underlying stochastic process is not observable/hidden.
   It can be observed through another set of stochastic processes
   producing the observation sequences.

(ie., in Markov Models, the problem is finding the probability of the 
observation to be in a certain state, 
in HMMs, the problem is still finding the probability of the observation to be 
in a certain state, but observation is also a probabilistic function of the 
state. )

eg. Hidden Coin Tossing Experiment, Urn and Ball Model



Elements of an HMM

● N: # of states
Individual states: S = {S

1
, … , S

N
} State at time t: q

t

● M: (# of distinct observation symbols)/state
ie. discrete alphabet size in speech processing
eg. heads & tails in coins experiment
individual symbols: V = {v
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M
}

●  A: State transition prob. distribution
aij = P[q
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t
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i
]  where 1 <= i, j <= N

●  B: the observation symbol probability distribution in state j
B = b

j
(k) where b

j
(k) = P[v

k
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t
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] where

eg. The probability of heads of a certain coin at time t.
●  π = { π

i 
} is are the initial state distribution.

●  π
i
 =P[q

1
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] where

*** Given N, M, A, B, π, HMM can be generated for O.
●  O : Observation sequence O = O
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's are one of v

i
's. T is # 

of total observations.



Complete specification of an HMM 
requires:

* A,B,π: probability measures
* N and M: model parameters
* O: observation symbols

HMM notation: λ (A,B,π)



Three Fundamental Questions 
in Modelling HMMs

1) Evaluation Problem:
 Given  Observation sequence: O = O

1
 O

2
 … O

T

       
   HMM model: λ (A,B,π)

How to compute P(O|λ)?

2) Uncover Problem:
Given  Observation sequence: O = O

1
 O

2
 … O

T

 HMM model: λ (A,B,π)
How to choose corresponding optimal state seq. Q=q

1
q

2
...q

T
?

3) Training Problem:
How to adjust parameters A,B,π to maximize P(O|λ)?



Solution for Problem 1

P(O|λ)=?
Enumerate every possible T length state sequence.
eg. Assume fixed Q=q1q2..........qT

Unfeasible 
computation time!
On order of 2T.NT



Solution for Problem 1

Forward-Backward procedure
Forward variable:
 α

t
(i)=P(O
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t
=S

i
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(prob. for partial observation sequence O
1
...O

t 
ending at state S

i
 at time t, λ)

Inductive Solution!

Computation time:
On order of N2T
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Backward Variable:
β

t
(i)=P(O

t+1
O

t+2
...O

T
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T
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(probability of the partial observation sequence from t+1 to end, given state Si at time t, λ)

Inductive Solution!
Computation time:
On order of N2T



Solution for Problem 2

* Aim is to find an optimal state sequence for the 
observation.
* Several solutions exist.
* Optimality criteria must be adjusted.

eg. states individually most likely at time t. 
maximizes expected # of correct individual states.



A posteriori probability variable γ:
γ

t
(i)=P(q

t
=S

i
|O,λ)

(probability of being in state S
i
 at time t given observation sequence O and λ)

P(O|λ) is normalization factor to make sure sum of γ
t
(i)'s equals 1

Individually most likely state q
t
 at time t:

Problem:
This equation finds the most likely state at each
t regardless of the probability of occurrence of
states, so the resulting sequence may be invalid.



Possible solution to the problem above:
Find the state sequence maximizing pairs or triples 
of states

OR

Find the single best state sequence 
to maximize P(Q|O,λ)
equivalent to maximize P(Q,O|λ)



Aim:  to find the single best state sequence Q={q
1
q

2
...q

T
}

for given observation sequence O={O
1
O

2
...O

T
}

Define δ:
(the best score, ie. highest probability along a single path, at time t)
(accounts for the first t observations, ends in state Si)

For each t and j, must keep track of argument maximizing above equation.

Use array ψ
t
(j)

Viterbi Algorithm



Viterbi Algorithm

To find the best state sequence:
1. Initialization

2. Recursion

3. Termination

4. Path/State Sequence Backtracking

●Just like forward procedure.
● But finds max instead of summation.
● ψ Keeps track of maximizing points 



Solution for Problem 3

Aim: Adjusting A, B, π to maximize the probability of the 
training data.

Choose λ (A,B,π) such that P(O|λ) is locally maximized 
using:

Methods:
* Baum-Welch Method
* Expectation-Modification (EM) Method
* Gradient Techniques



Define Variable ξ:
ξ

t
(i,j) = P (q
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(the probability of being in state Si at t, in Sj at t+1, 
given observation and model)

The path satisfying this condition:

Baum-Welch Method

 Relate to γ:

 



Baum-Welch Method

Expected number of transitions made from state Si in O:

Expected number of transitions made from state Si to Sj in O: 

Reestimation formulas for A,B,π :



Baum-Welch Method

Current Model: λ (A,B,π)
Reestimation Model: λ (A, B, π,)

Either;
1) λ defines critical point of the likelihood function, where λ=λ
2) model λ is more likely than λ

in the sense P(O|λ)>P(O|λ)

So λ is the new model matching the observation sequence better.

Using λ as λ iteratively and repeating reestimation calculation,
improvement for the probability of O being observed in model is 
reached.
Final result is called a maximum likelihood estimate of the HMM.



Baum-Welch Method

Reestimation formulas can be derived by 
maximizing Baum's auxiliary function over λ:

Proved that maximizing Q(λ, λ) leads to increased 
likelihood.

Eventually likelihood function converges to a 
critical point.



Baum-Welch Method

Stochastic constraints are satisfied in each reestimation 
procedure:

Also, Lagrange multipliers can be used to find π
 
,a

ij
,b

j
(k) 

parameters  maximizing P(O|λ)
(Think of the parameter estimation as a constrained optimization 
problem for P(O|λ), constrained by above equations)



Using Lagrange Multipliers;

Manipulating these equations, it can be shown that 
reestimation formulas are correct at critical points of 
P(O|λ)



So far, considered only ergodic HMMs:
Ergodic Model: 
Every state transition is possible. a

ij
's positive.

Left-Right (Bakis) Model:
As time increases, state index increases or stays the 
same. ie. states proceed from left to right.

Types of HMMs



Continuous Observation 
Densities in HMMs

● Finite alphabet up to now.
● Observations are continuous signals/vectors.
● General representation of the pdf:

                         
● O: vector being modeled
● c

jm
: mixture coeff. for mth mixture in state j

● N log concave/elliptical symmetric density (eg. Gaussian) mean: µ
jm

, cov: U
jm

● c
jm

 should satisfy            

such that pdf is normalized:



Continuous Observation 
Densities in HMMs

Reestimation formulas:

γ
t
(j,k) prob. Of being in state j at time t with kth 

mixture component accounting for O
t



Autoregressive HMMs

● Particularly applicable to speech processing.
● Observation vectors are drawn drom an 

autoregression process.
● Observation vector O: (x

0
,x

1
,...,x

k-1
)

● Ok's are related by:
where e

k
, k=0, 1, 2, 3, ..., p are Gaussian, 

independent, identically distributed rv. with zero 
mean, variance σ2 

●a
ij
, i=1,...,p are predictor (autoregression) 

coefficients.



Autoregressive HMMs

● For large K, density function O is approximately:

where

● r(i) autocorrelation of observation samples
● r

a
(i) autocorr. Of autoreg. coeff.s



Autoregressive HMMs

● Total prediction residual α  is

σ2 is variance per sample of error signal.
● Normalized observation vector:

●Samples xi's are divided by     (normalized  by 
sample variance)

● 



Autoregressive HMMs

Using Gaussian autoregressive density, assume the mixture density:

Each b
jm

(O) is denstiy with autoregression vector ajm (or autocorr.vector r
ajm

)

Reestimation formula for sequence autocorrelation r(i) for the jth state, kth mixture 
component:

Where γt(j,k) is the prob. of being in state j at time t, using mixture component k,



Null Transitions

NULL Transitions:
Observations are associated with the arcs of the 
model.
Used for transitions which makes no output. (jumps 
between states produce no observation)
Eg: a left-right model:

It is possible to omit transitions between states and 
conclude with 1 observation to account for a path 
beginning in state 1, ending in state N.



Tied States

●Equivalence relation between HMM 
parameters in different states.

●# of independent parameters in model is 
reduced.

●Used in cases where observation density is 
the same for two or more states. (eg in speech 
sounds)

●Model becomes simpler for parameter 
estimation



More...

● Inclusion of Explicit State Duration Density in 
HMMs

● Optimization Criterion
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Thanks for Listening!


