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 1 Project Description
Video  Browser  Showdown  [1]  is  an  annual  competition  among  video  retrieval
engines. In the competition, the participants are asked to find several videos by
giving queries to their own video search engine. The team that has found the given
videos most accurately becomes the winner. iMotion [2] is one of the video retrieval
engines that have been in the competition for years.

As a contributor to this project, in order to find the videos faster and trying more
queries out in a limited time, we noticed that we need to reduce the time for giving
a single query to the system. As the queries are given as sketches, we decided on the
integration of the sketch auto-completion system, which enables the classification of
the partially-sketched symbols and thus reduces the time spent for drawing sketches.
Since this work [3] was done by a Ph.D student of our lab, we had the code and the
integration was expected to take a little  time.  Nevertheless,  the training of  the
system on a large dataset of sketches took a long time. The constrained K-means
clustering task of the training couldn’t finish even in a week. By digging into the
source code of the framework, we identified 2 reasons for this problem:

• Poor  runtime  performance  of  MATLAB [4]:  The  source  code  of  the
framework  is  available  only  in  MATLAB.  Our  calculations  showed  that  the
clustering  operation  whose  original  code  is  optimized  would  still  have  taken
about 30 days on the high performance clusters of the university. This implies
that MATLAB has a poor runtime performance.

• O(N2)  performance  of  the  constrained  K-means  algorithm [5]:  The
constrained  K-means  algorithm  assigns  the  clusters  by  checking  given
background  knowledge.  If  we  have  N instances  to  get  clustered,  for  every
instance, the algorithm checks the constraint relations (must-link or cannot link)
to all of the N instances, therefore the running time of the algorithm is O(N2),
which is inefficient if we have a huge number of instances (i.e., N is large). In the
project, we planned to train the framework on Eitz [6] dataset, a dataset of
everyday object sketches. Due to the fact that the number of instances in the
dataset  extended  by  the  partial  sketches  is  about  360.000,  the  runtime
performance gets considerably slow.

In this project, we asked the students to implement the auto-completion system in 
Python,  which  has  a  better  runtime  performance  than MATLAB and  which  is
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suitable  for  computational  tasks.  Moreover,  since  they  completed  the
implementation of the framework as it is in the paper earlier, we asked them to do
some optimization on the code in order to make constrained K-means operation
faster. The running time of the entire training algorithm on this dataset has been
reduced from ~60 days to an hour (see  figures 1 and 2 for details). The resulting
system  was  then  integrated  to  iMotion  system.  Furthermore,  for  the
demonstration of the system in real time, some students worked on an Android UI
and its server back-end.

Figure 1: The runtime performance of the training algorithm on NicIcon [7] dataset. The
runtime of the original algorithm increases parabolic-ally, whereas the runtime of our

algorithm increases linearly.

2



Figure 2: The runtime estimations on a larger interval of instance count, using the curves 
fit in Figure 2.. Once the partial sketches are created, the number of instances in Eitz 
dataset raises up to 360.000. The original pipeline takes about 60 days, whereas our 

implementation takes less then a day (~an hour).
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 2 Distribution of Work
Here is the pipeline of the framework, (a) is for training and (b) is for testing.

Figure 3: The pipeline of the sketched symbol auto-completion framework

As mentioned in  Introduction,  some students  in  our  team also  implemented  an
Android UI and a server back-end for demonstration, and integrated the resulting
auto-completion system into iMotion system. The distribution of these parts is given
below.

Task Team Members

Extension of the datasets Arda, Semih

Feature extraction (debugging) Amir

Constrained K-means implementation Arda, Amir, Semih, Tuğrulcan

SVM training on clusters Ahmet, Arda

Probability calculation Ahmet, Arda, Semih

Saving trained model on disk Ahmet, Arda, Semih

Alternative pipeline Ahmet

Predictor implementation Ahmet, Arda, Semih

Accuracy testing Ahmet, Semih

Android UI Amir, Yağmur

HTTP Server for Android UI Tuğrulcan, Yağmur, Amir

iMotion integration Tuğrulcan

Table 1: Work distribution among team members
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 3 Work Done
 3.1 Model Training

 3.1.1 Dataset Extension
Eitz and Niclcon datasets contain human sketches of various objects and are
commonly used to evaluate the performance of sketch recognition systems.
They are available in various formats, mainly in XML or MATLAB variable
files (.mat). In both datasets, sketches are stored stroke by stroke. In order to
use these datasets in this project, we first had to transform them into JSON
format.  While  doing  this  transformation,  we  also  had  to  create  partial
sketches of every full sketch in these datasets, because the main goal of this
project is to give suggestions to partial drawings. As we had every individual
stroke of every sketch in the datasets, creating partial sketch was a matter of
approach. We decided that it would be a good start to take the first stroke of
sketch as the first partial sketch, and develop upon that with other strokes in
an incremental order. We have written a script in MATLAB which would
serve  to  this  purpose.  To  make  sure  we  are  in  the  right  track,  we  also
contacted with the authors of the original paper, both of whom also agreed
they also used the same approach while creating the partial sketches.

Figure 3: An example partial sketch generation from a full stick figure
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 3.1.2 Feature Extraction
In the original paper, the authors indicate that the sketches are represented
in feature domain using IDM [8] feature representation. The pipeline of this
feature extraction method is shown below.

Table 2: The steps of IDM feature extraction

To  extract  the  features  of  the  extended  dataset,  we  used  IDM  feature
extractor of this laboratory [9]. While extracting the features of the entire
dataset, we noticed that the features of some sketches couldn't get extracted.
After  the  sketches  giving  these  errors  were  identified,  we found that  the
current  implementation  was  not  able  to  extract  the  features  of  pure
horizontal/vertical lines and single points. By drilling into the code, we tried
to mark the point where this error happened. While normalizing the sketches
such that the standard deviation in both x and y coordinates is 1, if the
standard deviation in at least one of those axis is zero, a “division by zero”
error used to occur. 

6



To fix this  problem, we added a conditional  check,  whose pseudo-code is
given below.

Pseudo-code 1: Conditional checkers for standard deviation of x and y axis

Moreover, once the code was corrected, in order to make sure the code works
correctly,  we  created  three  sketches,  one  pure  horizontal  line,  one  pure
vertical line and one single point and run the modified code on them. The
visualizations are presented below.
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Figure 4: Feature representation of a horizontal line
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Figure 5: Feature representation of a vertical line
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Figure 6: Feature representation of a single point

 3.1.3 Constrained K-Means Algorithm
Naive constrained K-means algorithm we initially started to work with was
the algorithm designed by Wagstaff et. al.. Basically, the constraints are that
the full  sketches of  the same class  should be clustered and that  the full
sketches of different classes mustn't be in the same cluster, disregarding the
closest distance part of the K-Means algorithm. However, to partial sketches,
standard K-Means algorithm is applied, where each partial sketch is directly
assigned to the closest cluster center. Wagstaff’s proposed algorithm is an
iterative  one,  and  fairly  simple  to  implement.  In  order  to  apply  the
constraints,  for  each  instance  (sketch),  the  algorithm  checks  all  other
instances to see their assigned clusters. This provides a time complexity of
O(N2), which makes it extremely slow and unfavorable on big datasets. Even
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on the  small  portions  of  the  dataset,  execution  time consisted of  several
hours. 

For  an  instance  of  15,000  sketches,  execution  time  of  the  MATLAB
implementation is being held back by constrained K-means implementation
and producing the output model took approximately 7 hours. Our educated
guess is that on the full dataset, execution time would be up to nearly three
months even if we assume the constraint matrix included in the algorithm,
which will eventually include 350,000 x 350,000 integers, can fit into main
memory. For this reason it seems infeasible to integrate the naive algorithm
into iMotion system and it  seems obvious that the naive Constrained K-
Means algorithm is not designed for big datasets.

However with further inspection, we found several workarounds which can
potentially  reduce  the  execution  time  of  the  naive  Constrained  K-Means
algorithm from O(N2) to O(N). In general, as we are not restricted by space
constraints,  we  made  a  trade-off  between  computation  and  space  and
precomputed  most  of  the  necessary  information  constrained  K-Means
algorithm checks every time repeatedly. The biggest contribution was getting
rid of the constraint matrix which has a space complexity of O(N2). Although
constraint matrix provided us with the important structure of dependency,
this information was already available to us, without creating the expensive
constraint matrix, as we were aware of that dependency is only among the
full sketches of the same class. 
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Pseudo-code 2: Naive constrained K-means algorithm

Furthermore,  we  realized  that  it  is  possible  to  ameliorate  this  algorithm
through parallelization,  although the  naive  version  of  that  algorithm had
considerable amount of data dependency, the iterative implementation was
redundant as mentioned.  Before  we optimized  the algorithm,  we broke it
down the into 4 separate parts: calculating the distance between sketches and
clusters, applying constraints, assigning sketches to clusters and finding new
cluster centers. It was obvious that the bottleneck of the execution would be
the  calculation  of  distances.  We  rewrote  the  calculation  code  so  that  it
became suitable for an embarrassingly parallel code block. From this point
on, we needed to find a viable development platform to apply our parallel
algorithm. After looking through multiple options, we chose to implement the
code in CUDA, as we had some experience with that platform beforehand. 

NVIDIA graphics cards from 2007 and onwards have the capability to run
CUDA [10],  as  their  architecture  is  designed  that  way.  Simply  put,  one
graphics card, which is called grid, contains thread blocks (multiprocessor),
in which threads (scalar processor) are being stored. Dimensions of grid and
thread blocks depend on the hardware where the program is running. We
looked through the limitations of computers on which the program will run
(2 computers in the lab), and designed the memory structure of the program
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accordingly.  Each  sketch  (full  and  partial  alike)  has  been  assigned  to  a
thread, and every 512 thread has been assigned to a thread block. We have
used the shared memory of the GPU to hold sketch information of every
thread block,  which greatly  reduced read/write  time of  threads,  as  GPU
shared  memory  nearly  attains  speeds  that  of  registers.  Given  that  the
hardware limitations were the main obstacle during the implementation of
this part, when processing large amounts of data which exceeds the memory
of the GPU, we divide sketches into biggest blocks that GPU can hold, and
process them iteratively. As a result of the implementation, this part of the
algorithm was relieved from being the bottleneck of the program, and thanks
to the calculation power of  GPUs, it has shown approximately 400 times
faster execution time.

Figure 7: Execution model in CUDA architecture

For the dependency constraints, we’ve decided to use the voting mechanics of
constrained  K-Means  implementation  (see  3.1.4 for  details)  directly  from
MATLAB code as they give far superior accuracy results than any of the
algorithms  we  had previously  tried.  It  seemed  like  Tirkaz  et.  al.,  in  the
implementation  mentioned  in  the  paper  about  sketched  symbol  auto-
completion, had already materialized our idea of voting in his Constrained K-
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Means implementation in the best possible way with a better insight.

Our contribution is shrinking Tirkaz et. al.’s algorithms time complexity to
O(N) from O(N2) by eliminating the use of constraints matrix and expensive
queries on that matrix. 

The implementation of Tirkaz et. al. uses negative votes so that instances are
encouraged to fall into the same cluster with the majority of their classes,
however they are not forced to -as opposed to the naive CK-Means, where we
force instances of the same classes to fall in the same cluster-.

Although this does not fully realize our background knowledge -that the full
sketches of the same class should be in the same cluster-, it finds a middle
ground; if an instance of a full sketch is too far away form the preferred
cluster of its class, instance can still prefer a cluster other than the majority
of its classmates suggest.

Now we will describe the full algorithm we implemented in Python, which
mostly resembles the variant Tirkaz et. al. derives:

Pseudo-code 3: Naive K-means algorithm

In the standard K-means implementation each data point is directly assigned
to  the  closest  center  and algorithm proceeds  with  calculating  the  cluster
centers by taking means. Naive K-means algorithm does not consider the
background knowledge we naturally possess from the distribution of the full
sketches of the same classes.

On the other hand, our final CK-means algorithm works as follows:
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Arguments: We take the data-set, a boolean indicating whether each sketch
is full or not, an array to indicate the class of every sketch. With these three
inputs, we can apply K-means algorithm using our constraints since we can
deduce the constraints using only those inputs.

Initializing  cluster  centers:  First  we  initialize  the  cluster  centers  via
calculating the mean of the full sketches for each class. In other words, each
cluster center is assigned to mean of the full sketches of the same class. If
number of cluster centers is bigger than the number of sketch classes, we
initialize other cluster centers randomly.

GPU computation (part of the loop):  At the beginning of each loop,
cluster centers and an empty matrix of size number of instances x number of
clusters is send to GPU to obtain the following:

▪ The distance of every instance to every cluster
▪ The closest cluster center for each instance (e.g. vote of this instance)

Voting (part of the loop): Since GPU returns the closest center for each
feature, this particular cluster center constitutes the necessary information
for voting. Every feature votes for its own class, however the main difference
of this implementation is that instead of voting to promote a certain cluster,
they  vote  for  preventing  themselves  from going  to  other  clusters.  Hence,
every feature -for its class- negatively votes for the following:

▪ For full sketches of the same class to be assigned to other clusters
▪ For full sketches of different classes to be assigned to the same cluster

As partial sketches do not have any constraints, they do not vote, and are
treated as we are doing simple k-means iteration. They are directly assigned
to their respective cluster centers at the beginning of voting, without being
included.

Assigning full sketches (part of the loop): When the time for assigning
a  cluster  has  arrived,  a  full  sketch  looks  for  each  cluster,  considers  the
negative votes together with distance to every individual cluster, and applies
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a weighted sum of those two factors. Eventually it gets assigned to a cluster
with the smallest sum. Partial sketches are assigned in the same way as the
K-means without constraints. Hence they do not consider negative votes but
the distance for each cluster center. Weight parameters are used to balance
negative  votes  and  distance  metric.  The  total  sum  is  calculated  as
(weight*number_of_negative_votes + distance) so weight = 0 implies K-
means without constraints, and a large weight  implies neglecting distances,
and only considering the votes for each class.

Pseudo-code 4: Our constrained K-means algorithm (feature refers to an instance)

 3.1.4 Reducing Time and Space Complexity of CK-Means
Algorithm
The problem that the original MATLAB code cannot train on Eitz dataset
can be explained by the space and time complexity of this implementation,
and mainly of  the constrained K-Means algorithm, which  constituted the
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bottleneck  of  the  implementation.  Constrained  K-Means  implementation
made it impossible to even store necessary data on the main memory, as the
complete training of the Eitz dataset requires 19 gigabytes of RAM only for
the constraints matrix. Even if we assume that we can handle the necessary
memory shortage, training can still take up to two months.

The aim of using CK-Means algorithm is to exploit background knowledge of
the class information of the sketches to encourage full sketches of the same
class  to  fall  into  the  same  cluster,  so  to  preserve  full  sketch  accuracy
preventing too much confusion on full sketches.

This was achieved by putting must-link constraints between full sketches of
the  same  class,  and  putting  cannot-link  constraints  on  full  sketches  of
different  classes.  This  encourages  respective  instances  to  get  clustered
together, or encourage them to get separated, if cannot-link constraint is the
case.  Of  course  it  is  more  than  obvious  that  constraint  matrix  can  be
calculated from the information of whether or not a sketch is full, and the
class  information  for  sketches.  Instead  of  calculating  constraint  matrix,
replacing this with checking the condition of two sketches to be full and from
the same class -or checking whether they are from different classes- will get
rid of the constraint matrix, however this even hurts the run time.

Figure 8: Showing must-link and cannot-link constraints
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The way that the algorithm of Tirkaz et. al. works is to change the distance
metric, using the sum of the must-link and cannot-link instances in addition
to Euclidean distance.

Must-link distance of an instance to a cluster: Number of features not
in this cluster having must-link constraint with the instance

Cannot-link distance of an instance to a cluster: Number of features
in this cluster having cannot-link constraint with the instance

The way that algorithm calculates the must-link and cannot-link distances is
the most expensive way, for each feature, iterating a row of the constraint
matrix -which has width of ~350.000- to check the dependencies, and check
the cluster of the instances which has the constraint relationship. Therefore
in each iteration, two matrices with the size of ~300.000x300.000 are and’ed,
and every row is summed up. This constitutes the main drawback of the
algorithm.

It seems that the current algorithm implementation is the most general, and
it can be changed to exploit the regularity in the data. The speed-up we can
generate is to see that must-link distance + cannot-link distance is unique for
a  (class, cluster) pair, since all the features inside a class has exactly the
same cannot-link and must-link constraints. Instead of calculating must-link
distance + cannot-link distance  for each instance to be clustered,  we can
calculate it once for a specific class and cluster and use it again for each
instance of the same class. Then the new strategy is to iterate over instances
twice, first to calculate the (class, cluster) distances, and then find the cluster
which minimizes our new distance metric.

Hence, the mere contribution is calculating the class to cluster distances for
the must-link and cannot-link constraints. 
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Figure 9: An example scene before voting

Table 3: Class vs. cluster distances of Figure 9

Now we will iterate over instances and fill the class to cluster (must-link +
cannot-link) distance matrix.

Figure 10: First voting
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Table 4: Class vs. cluster distances in the first voting

Figure 11: Second voting

Table 5: Class vs. cluster distances in the second voting

20



Figure 12: Third voting

Table 6: Class vs. cluster distances in the third voting

Once we iterated over instances, since then we know all the from instance to
cluster distances, we can continue running constrained K-means algorithm,
without the burden of calculating these distances for each feature separately.

 3.1.5 Probability Calculation
In  order  to  make  a  prediction  given  a  test  instance  x,  we  compute  the
posterior  probability  of  each  symbol  class,  by  running  SVM  prediction
function over clusters and then multiplying probabilities in clusters with the
probability of the instance being in the cluster.

where x represents the input symbol; K is the total number of clusters; P(si|
ck,x) is the probability of symbol class  si given cluster  ck and input  x; and
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P(ck|x)  denotes  the  posterior  probability  of  cluster  ck given  x.  Given  the
distance from x to each cluster center, we estimate P(ck|x) as 

where μk is the mean of kth cluster ck and P(ck) is the prior probability of ck

estimated using the proportion of the number of instances the cluster k and
the total number of instances and the coefficient  is set to 0.3.σ

To  realize  the  above  formula,  we  have  written  the  python  class  named
Predictor.  In this script,  the probability  P(ck|x) is calculated using the
function named clusterProb, the probability P(si|ck,x) is calculated using
the  Python  package  named  LibSVM  [11]  and  the  function  named
calculatePosteriorProb computes P(sk|x).

 3.1.6 Using Support Vector Machines on Clusters
In this project, we have adopted a different approach to the conventional use
of  support vector  machines.  In a more general  situation,  vector  machines
would be trained by passing raw data as argument. Here, training of vector
machines  are  being  done  by  passing  clusters  containing  sketch  data  as
arguments  and  training  clusters  in  an  orderly  fashion  to  create  support
vector machine models.

For this particular work, LibSVM API seemed the best option, given the
availability on Python with well  defined functions,  minimum overhead on
memory and multiple options to tweak the support vector machine itself to
serve to purpose of this project. 

After  analyzing  the  work  done  in  the  auto-completion  paper,  we  have
concluded that our classification method for SVM would be Cost-Support
Vector Classification, and our kernel type would be Radial Basis Function.
We have set  coefficient to 0.125, as it would give out the most desirableɣ

results according to the paper, and set the cost coefficient of Cost-Support
Vector  Classification  to  8.  These  options  are  reflected  in  Python  in  the
following form: 
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svm_parameter('­s 0 ­t 2 ­g 0.125 ­c 8 ­b 1 ­q')

where -b option lets us train an SVM model for probability estimates and -q
option lets us omit the output of the function, which is given as default by
LibSVM API.

In  the  program,  after  setting  the  parameters,  we  need  to  define
svm_problem.  This  built-in  function takes  2 arguments,  first  one is  the
supervised classes of sketches and the second one is the sketch data with all
dimensions included.  As our approach is to train clusters individually, for
each  cluster,  we set  the  svm_problem according  to the data inside  the
cluster  at  hand.  After  this  step,  the  only  action  required  is  to  call
svm_train function using svm_problem as a parameter. 

Pseudo-code 5: Pseudo-code of SVM training on clusters

 3.1.7 Saving Trained Model on Disk
At the first stage of the implementation, runtime of feature extraction used
to be slow and redundant. Since dataset being used for testing was fixed (ie.
Eitz and NicIcon datasets), in order to reduce running time of testing we
decided  to  generate  features  of  datasets  and  save  them.  Via  using  this
approach,  features  can be directly  loaded and used  for  training,  thus  we
overcame the redundancy problem.

Another concern was using models multiple times. To overcome this issue,
keeping clusters and their SVM outputs was essential. In this way, trained
models can be loaded multiple times and testing can be done easily.

For  the  reasons  explained  above,  we  have  implemented  a  class  named
FileIO. Using Pandas [12] library this class can save and load necessary
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information  such  as  extracted  features,  cluster  centers  as  .csv  files.  This
format was chosen for its readability and easy implementation. SVM models
trained  are  saved  and  loaded  using  LibSVM  built-in  functions
svm_save_models and svm_load_models.

For saving testing results, Python serialization library Pickle [13] was used.
In this way a variety of plots can be generated without running the same test
again.

 3.1.8 Increasing Performance by Applying Multiprocessor 
Parallelization
During  the  development  cycle  of  the  project,  we  have  seen  some  issues
regarding the performance of the application. If the system were to be tested
more rigorously, the execution time had to be reduced. For this reason we
implemented the framework for CUDA architecture for the sake of utilizing
the power of the GPU. Using CUDA, we’ve obtained fantastic results, and we
had the chance to test the entire Eitz dataset (~350.000 sketches, including
user-generated partial sketches), In light of this successs, we have decided to
start searching for parts of the program where similar amelioration can be
achieved.

In SVM training and saving section, we have found that clusters passed to
the vector machine are independent from each other,  they do not require
being  sent  in  an  iterative  manner.  It  seemed  that  the  structure  of  the
algorithm could be re-programmed with parallel programming as the state of
the algorithm was already an embarrassingly parallel problem. Pool library of
Python was suitable for this job, so we’ve implemented a process pool with 4
processes inside. Each process takes  ¼ of clusters with data in them, and
train the vector machine. When a cluster is trained, the resulting model is
saved. Having implemented the parallelization, we’ve tested the iterative and
parallel implementation of SVM training/saving. 
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Results are the following:

Iterative Parallel

5 clusters 3m45s 2m

25 clusters 24m 9m

50 clusters 42m 16m

150 clusters 1h56m 41m
Table 7: Running time of the iterative and parallelized training pipelines

The image below best illustrates how the processes work with clusters in an 
orderly but parallel fashion.

Figure 13: The illustration of the parallelization of SVM training

 3.1.9 A New Method
Following  the  implementation  of  the  standard  pipeline,  we  also  started
research for a  new method that  was hoped to increase partial  prediction
accuracy. 

In order to deal with the wide range of sketch classes, one idea was to divide
the class space into several groups. After grouping, standard pipeline can be
run on every group which contains a subdivision of the huge dataset. The
goal of this step is to collect similar classes in a group where the standard
pipeline  will  run  on  a  much  specialized  data  set.  For  example,  running
standard  recognition  training  on  a  group  which  contains  round  natured
sketches,  is  expected  to  create  a  model  which  have  more  ability  to
differentiate round natured sketch inquiries.
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Another motivation for dividing the data into several groups was reducing
the time taken for clustering operation of the standard pipeline which was
the bottleneck of the training.

During recognition, the system firstly finds the distance of each symbol to
every  group  and  then  computes  the  posterior  probabilities  via  running
standard pipeline in every single group.

Grouping:  There  is  an  ambiguity  in  finding  similar  sketch  classes.  Any
random sketch can not be chosen as the representative of a class. In order to
solve  this  ambiguity,  we  compute  the  mean  of  the  sketches  (using  two
method: by using only full  sketches and  by using all  extended sketches)
based on their feature representation. Computed mean vector is accepted as
the representative of the class. 

For  grouping,  class  representatives  are  clustered  using  iterative  K-Means
algorithm  where  the  iteration  number  is  given  as  an  input  argument.
Throughout the iterations, the output with the minimum total distance to
their centers is chosen. Moreover, to obtain evenly populated groups, at each
iteration, the clusters where there are too few elements get rejected.
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The algorithm used for grouping is given below.

Pseudo-code 6: Pseudo-code of grouping algorithm

To  experiment  and  observe  the  effect  of  the  grouping  using  K-means
algorithm, we tried another method named random grouping. Running the
new pipeline using random grouping was expected to give lower accuracies
since distances to groups becomes no longer meaningful. Moreover, when the
experiment is repeated several times, this method leads to a larger standard
deviation since the division of groups might change the model drastically. 

Training: Having grouped the instances, in every single group, the standard
pipeline is run. Here we should state that in every group, the number of
clusters is given by hand. Thus, at the training stage, alternative method
trainer takes an array input including the number of clusters in groups. 

In experiments, we used different cluster number sets and obtained the best
result when they are set to the number of class in every group. 
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The diagram summarizing the training pipeline is given below.

Figure 14: The training pipeline of the alternative method

Posterior Class Probabilities: In order to make a prediction given a test
symbol  x, we compute the posterior probability of each symbol class  si, by
computing the probability of x, to be in a group and then running standard
probability calculation method in the specific group. 

Using  the  above  formula,  the  class  probabilities  of  the  instances  can  be
calculated. To explain the formula further, x represents the input symbol, K
is the total number of groups,  P(si|gk,x) denotes the probability of symbol
class  si given  group  gk and  input  x;  and  P(gk|x)  denotes  the  posterior
probability of group gk given x. The probability P(si|gk,x) is computed using
the standard pipeline. 

Given the distance from x to each group center, we estimate P(gk|x) as
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where μk is the mean of the kth group gk and P(gk) is the prior probability of
gk estimated using the proportion of the number of instances that resides in
the group k and the total number of instances and the coefficient  is set toσ

0.3.

The entire pipeline including both training and testing is given below.

Figure 15: The diagram summarizing the whole pipeline

 3.2 Prediction
 3.2.1 Implementation

Our implementation strictly followed the paper written by Tirkaz et.  al..
More than that, we found that results in the paper cannot be reproduced and
observed some ambiguities and unspecified hard-coded parameters some of
which disastrously degraded our accuracy results. We could only realize the
differences -paper versus implementation- through a further inspection on the
demonstration code after we found our accuracy results cannot match the
ones given in the paper, although we were sure that we implemented the
pipeline correctly. In general, there were three parts which are not mentioned
in the paper, or not stated precisely.

▪ The details of CK-means implementation
▪ Calculation of posterior class probabilities
▪ How partial sketches are added to the dataset of pure full sketches
▪ Applying multiprocessor parallelization to accelerate the pipeline

The details of CK-means implementation:  Since the paper does not
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point  out  a  specific  implementation  of  the  constrained  K-means
implementation,  we  started  implementing  the  most  popular  and
straightforward  one  by  Wagstaff  et  al..  This  implementation  has  a  time
complexity of O(N2) if we keep the other parameters fixed. This can become
problematic  when  the  number  of  instances  increases.  We  reduced  time
complexity to O(N) via exploiting the structure of our data. However in the
actual  implementation  of  the  paper,  an  entirely  different  approach  of
constrained K-means was used, although the work cited was the paper of
Wagstaff et. al., which is recently discussed. Understanding how instances are
clustered  was  not  possible  without  digging  into  the  demonstration  code
provided by the author, and subtle differences between the work cited and
the actual implementation was not explained in the paper.

Calculation of posterior class probabilities:  During the calculation of
the  posterior  probabilities,  we  firstly  calculate  the  posterior  cluster
probabilities, which is defined in the paper as:

This  calculation  gives  us  the  probability  that  an  instance  belongs  to  a
cluster. Nevertheless, further inspection on the code provided by the author
revealed  that  the  actual  implementation  is  quite  different,  and  posterior
cluster probability, as in the paper, dropped our accuracy results up to 10%,
especially  in  full  sketch  classification.  The  actual  implementation  is  the
following:  

where  σ is set to 0.3, without giving any particular reason neither in the
paper nor in the original MATLAB implementation. It is sad to see a hard-
coded value without any explanation -even in the paper-, on absence of which
reduces the accuracy rates to 10%.

How partial sketches are added to the dataset of pure full sketches:
The process  of  generating  partial  sketches  is  not  explicitly  stated  in  the
paper, which makes it hard to reproduce the accuracy results. However since
we could contact the authors, and we confirmed that the partial sketches are
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generated  with  respect  to  timestamps,  so  that  assuming  n strokes  in  a
sketches, n-1 partial sketches are generated, where kth partial sketch includes
the first  k strokes,  sorted by the time-stamp. On the other hand we also
questioned whether not all full sketches are used in the training -and possibly
in testing-. The reason for this curiosity is that full sketch accuracies are
higher than the paper and partial sketch accuracies are lower than the paper.
These observations can be reversed, and accuracies can be made equal with
the paper by reducing the number of partial sketches used in the training,
since we have observed that number of full sketches greatly reduces the full
sketch accuracy. However we couldn’t find the answers by even asking the
authors, since they seem to forgot the details of the project.

Applying multiprocessor parallelization to accelerate the pipeline:
At the implementation phase, we have noticed that the predictor component
of  the  program  is  also  suitable  for  parallelization,  and  the  performance
(execution  time)  can  be  ameliorated,  with  an  approach  similar  to  the
parallelization of SVM training/saving. A process pool is being initialized at
the beginning of the prediction code block in a way that the pool spawns 4
processes and executes the job at hand. Then, each process takes up to 1/4
of data to work on. The main difference between this process pool and the
former  one  is  that  the  end  results  of  the  prediction  tasks  are  executed
simultaneously, so the results from each process is merged in a neat fashion.
Having adopted this approach, we’ve seen that the prediction is sped up,
nearly 4 times the speed of the iterative (former) one. 

Figure 16: Illustration of parallelized prediction

Using both, we have ameliorated the performance of the execution time of
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the project by a significant margin,  which enables  us to test  and further
develop the program much easily. Only negative effect of this approach is
that in order to gain performance, we had to sacrifice the memory, which is
usually  expected  in  multiprocessor  programming.  At  the  end,  through  a
trade-off between performance/memory, the implementation of parallelization
became successful.

 3.3 Accuracy Testing & Results
 3.3.1 On NicIcon Dataset

 3.3.1.1 Standard Pipeline

Figure 17: Accuracy performance of our implementation, on partial sketches of
NicIcon dataset
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Figure 18: Accuracy performance of our implementation, on full sketches of
NicIcon dataset
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Figure 19: Reject rates of NicIcon partial sketches
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Figure 20: Reject rate vs. accuracy for NicIcon partial sketches
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Figure 21: Reject rate vs. accuracy for NicIcon full sketches

 3.3.1.2 Alternative Pipeline
Test results that we have obtained by testing it on NicIcon dataset are
given  below,  in  figures  22 and  23.  While  testing,  the  sketches  were
grouped by taking the representative of each class as the mean of full
sketches within the class. As expected, when there is a single group, the
accuracy  results  were  identical  to  what  we  have  obtained  using  the
standard pipeline.

The map below shows accuracy results when the data classes were divided
into 2 and 3 groups.
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Figure 22: Accuracy results of the alternative pipeline, on NicIcon full sketches
(the sketches were divided into 2 groups)
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Figure 23: Accuracy results of the alternative pipeline, on NicIcon partial
sketches (the sketches were divided into 2 groups)
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Figure 24: Reject rates of NicIcon partial sketches (the sketches were divided
into 2 groups)

As seen in the heat maps above, compared to the original pipeline, the
accuracies of this method were found to be less efficient. We believe in
that  the  reason  is  that  probabilities  of  being  in  a  group  should  be
computed using a different method rather than using the same approach
as in the classical pipeline. Moreover, rejection rates are lower than the
classical  pipeline.  This  shows  that  the  alternative  system  is  more
confident of the answers. Since we used standard predictor in every group,
the most probable reason is that the calculation of the probability of the
instance to be in groups which is calculated using the formula below 

as already explained.

39



Figure 25: Accuracy results of the alternative pipeline, on NicIcon full sketches
(the sketches were divided into 3 groups)
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Figure 26: Accuracy results of the alternative pipeline, on NicIcon partial
sketches (the sketches were divided into 3 groups)

Figures  25 and  26 show the partial accuracies when the sketches were
divided into 3 groups. Compared to 2-grouping, the results of 3-grouping
are slightly better. This indicates that the accuracy results heavily depend
on how well classes can be grouped.

 3.3.2 On Eitz Dataset
 3.3.2.1 Standard Pipeline

We  also  tried  to  verify  our  implementation  by  running  the  same
experiments as Altıok et.  al.  describes [14].  The results are illustrated
below, in figures from 27 to 29.
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Figure 27: Eitz partial sketch accuracy results of the standard pipeline by
running the same experiments as Altıok et. al. describes
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Figure 28: Eitz full sketch accuracy results of the standard pipeline by running
the same experiments as Altıok et. al. describes
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Figure 29: Eitz partial sketch reject rates of the standard pipeline by running the
same experiments as Altıok et. al. describes

Compared  to  the  results  given  in  Altıok  et.  al.'s  paper,  there  is  a
negligibly small difference, which can be explained by the fact that the
experiment  is  divided  into  sub-experiments  each  of  which  has  10
randomly picked classes. The chance of having the same classes in every
sub-experiment is very low. 

We also tested the pipeline on the entire dataset. We took the first 70
instances of every class for training, and the last 10 for testing. When the
partial sketches are generated, the number of instances used for testing
becomes around 40.000 and SVM classification for a single instance takes
around  a  second.  We  noticed  that  the  time  left  after  debugging  the
implementation was not going to be enough to use all of the sketches
allocated for testing, then we randomly picked 5.000 of them. The results
are given below, in figures from 30 to 33.
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Figure 30: Accuracy performance of the standard pipeline, on partial sketches of
the whole Eitz dataset
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Figure 31: Accuracy performance of the standard pipeline, on full sketches of the
whole Eitz dataset
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Figure 32: Reject rates of the standard pipeline, on partial sketches of the whole
Eitz dataset

47



Figure 33: Reject rates of the standard pipeline, on full sketches of the whole
Eitz dataset

 3.3.2.2 Alternative Pipeline
For  evaluating  the  alternative  pipeline,  we  run  several  tests  on  Eitz
dataset (the experiment described by Altıok et. al., testing on the whole
dataset). The sketches were divided into 5 groups. The results are given
below.
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Figure 34: Accuracy performance of the alternative implementation by running
the experiments Altıok et. al. describes, on partial sketches of Eitz dataset
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Figure 35: Accuracy performance of the alternative implementation by running
the experiments Altıok et. al. describes, on full sketches of Eitz dataset
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Figure 36: Reject rates of the alternative implementation by running the
experiments Altıok et. al. describes, on partial sketches of Eitz dataset

As seen  in  figures  from  34  to  36,  the  alternative  implementation  has
nearly caught the performance of the original implementation (see 3.3.2.1
for  details),  but  couldn't  beat  it.  We  believe  in  that  a  more  robust
grouping  method  will  improve  the  results  and  beat  the  accuracy
performance of the standard one. 

Moreover, we also tested the accuracy performance of this pipeline on the
whole Eitz dataset, in the same way as described in 3.3.2.1. The results of
that experiment are given below.
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Figure 37: Accuracy performance of the alternative pipeline on partial sketches
of the whole Eitz dataset, when C (confidence threshold) is set to 0
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Figure 38: Accuracy performance of the alternative pipeline on full sketches of
the whole Eitz dataset, when C (confidence threshold) is set to 0

As seen in figures  37  and 38, the results are lower than the standard
pipeline, with a small difference. However, using different group numbers
or grouping techniques may improve the accuracies. Actually we aimed to
finally try out different number of groups, but we didn't have sufficient
time for testing and hence reduced the scale such that we are able to
repeat  the  experiments  numerous  times  in  order  to  see  the  effect  of
number of groups by changing the value every repetition. We only used
the instances of first 40 classes. For each class, we chose the first 70 full
instances  for  training,  and  the  last  10  for  testing.  Results  of  this
experiment are given below, in a single figure.
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Figure 39: Trying different number of groups out in our alternative pipeline (6,4
and 2)

As seen in the figure above, increasing the number of groups deteriorates
the classification performance, but improves confidence of the classifier.
These  results  encourages  us  to  try  out  different  grouping  techniques,
however, since we didn't have enough time in the summer research period,
we couldn't do a deeper research on it. We have also pointed out this
issue in Future Work & Conclusion section.
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 3.4 Android UI for Demonstration
We developed an application that provides users an Android graphical interface
to try out the auto-completion pipeline in real life. The application has basic
features as shown in figure 40.

Figure 40: Use case diagram of the application

 3.4.1 How to Use
As seen in figure  41, there are four circle buttons on the right side of the
screen and there is scroll bar on the left side of the screen. Unless user clicks
on one of  those buttons,  application will  continue to draw whatever  user
draws on the screen. 

If user clicks undo button after drawing a stroke, the recently drawn stroke
will be removed and class names with their probabilities will be recalculated
as shown in figure 41.
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Figure 41: A screen-shot after ladder is drawn

If user clicks one of the pictures on the scroll bar the picture will be shown
on the screen as shown in figure 42.

Figure 42: A screen-shot after one of the images on the scroll bar is clicked 

User can also remove strokes by choosing the stroke, after s/he clicked on
erase stroke button. For instance, as seen in figure 43, user can click on this
button and then can pick a stroke to remove. Having clicked this button,
class probabilities of the remaining sketch will be recalculated. Afterwards,
scroll bar will be refreshed as seen in figure 44.
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Figure 43: A screen-shot after a ladder is drawn on the canvas

Figure 44: A screen-shot after highlighted stroke in figure 43 is removed.

Moreover, user can reset IP address of the machine where the classification
program is  running  by  clicking  change IP button.  Once  this  button  is
clicked, a pop-up window will appear to input a new IP address, as seen in
figure  45.  With the aid of  that  property,  IP address  of  the classification
server can be changed without digging into the source code and building the
application again.
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Figure 45: A screen-shot after change IP button is clicked.

 3.4.2 Implementation
 3.4.2.1 Drawing Strokes

In this application, user can draw a sketch on the canvas. The application
receives the sketch and converts it into JSON format, the textual way of
representing a sketch. Every time a sketch has been changed, application
sends JSON of this sketch to the server.

Every time user draws a stroke on the screen or removes a stroke from the
sketch, the JSON string of the entire sketch is updated and sent to the
server as described in 3.4.2.6.

 3.4.2.2 Erasing Strokes
In this application, user can modify the sketch by removing particular
stroke(s). We consider an array including all of the strokes. When user
pushes erase button and chooses the stroke to remove, application finds
this stroke on the list and removes it. This functionality allows users to
remove any stroke. 

 3.4.2.3 Undo 
Another functionality is keeping a stack of all the actions taken by users,
e.g.  adding  or  removing  a  stroke.  The  last  action  can  be  undone  by
pushing and removing this action from the stack, going back to the sketch
which was drawn before the action and classifying it once more.

58



 3.4.2.4 Clearing Canvas
Another feature is that the application enables users to clear the canvas
via clear all button. Once this button is clicked, results in the scroll bar
are  also  cleared.  Additionally,  the  objects  referring  to  the  sketch
abstraction, the drawing canvas and the stack keeping the actions are
reset.

 3.4.2.5 Classification
The application communicates with HTTP server via a service that we
implemented. One of the most significant features of the application is
that it can give suggestions in real time. We implemented a service that
communicates  with  the  server  in  the  background  and  provides  fast
responses to users.  Moreover,  every time user  updates the sketch,  the
recent  sketch  is  sent  to the server  using asynchronous  threads.  Server
classifies the sketch and tries to recognize it through the standard auto-
completion pipeline. Having classified the sketch, server sends top 5 class
names  with  their  probabilities.  The  application  receives  names  and
possibilities of these classes and shows them to the user on the scroll
view. User can choose one of these classes by clicking on its representative
class image. When an image is clicked, the sketch in canvas gets replaced
by that image.

 3.4.2.6 HTTP Communication
 3.4.2.6.1 Implementation

Every time the sketch is updated by adding/removing a stroke, the
resulting sketch on the canvas is sent to the server for classification.
When the classification is done, the most probable 5 classes with their
probabilities is sent back to the application. Since a prediction task
takes less than a second, all  these events happen in real time. We
preferred  Hyper  Text  Transfer  Protocol  [15]  to  maintain  the
communication between application and server.

To implement the server-side of communication, we chose Flask [16] as
the HTTP server framework in Python. To make sure the sketch is
coming to the server with no corruption, before sending the sketch to
the classifier, it is also visualized on the screen of the machine where
the server is running.
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b
Figures 46: A binoculars drawn on the client application (a) and its

visualization on the server (b)

 3.4.2.6.2 Sketch Abstraction
A Sketch  object  consists  of  Stroke objects  that  are  kept  in  an
ArrayList,  and  sketch  ID.  Sketch  class  implements  JSONable
interface in order to convert sketch object into JSON string. However,
while  testing to program we realized that every time creating new
JSON string to send to the server is time-consuming. Therefore, the
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JSON string of strokes is kept in the sketch and after every update
operation  this  JSON string  is  also  updated.  With  the  aid  of  this,
application can give faster response to users, since JSON string is not
recreated every time but updated. 

Moreover,  Strokes  of  a  Sketch  consist  of  ArrayLists  that  store
Point objects  and  stroke  ID.  Moreover,  Point objects  keep
coordinates,  point  IDs  and  time  information.  Stroke and  Point
classes  implement  JSONable interface  to  convert  their  data  into
JSON string.

A diagram explaining the abstraction and an example representation
in JSON are given below.

Figure 47: A diagram explaining the sketch abstraction
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Figure 48: An example of JSON string of a sketch

 3.5 Integration into iMotion
To integrate our system into iMotion, we firstly modified the UI in a way that it
also records the sketch in the abstraction discussed in 3.4.2.6.2. Secondly, the
standard implementation of auto-completion has been integrated to the sketch
server, which is the back-end for partial sketch classification. Finally, we have
implemented the communication between the UI and the sketch server in a way
that the UI sends both image and JSON version of the sketches in frames and
presents  the  results  of  the  recent  (created  by  University  of  Basel)  and  our
classification pipeline. The details of the integration are given in the subsections
below.

 3.5.1 Front-end Integration
The recent system of iMotion used to send the sketch in frames as bitmap
images. Yet, our project uses a different representation that is described in
3.4.2.6.2. This structure is implemented in JavaScript, and included in the
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UI.

This structure was supposed to be created as soon as a user starts sketching.
Therefore,  the  canvas  functions  in  the  original  file,  named
sketchObjectCanvas.js, have  been  modified.  Now  a  new  Sketch is
instantiated as soon as a new Canvas is instantiated or the canvas is cleared.
Then every time the user clicks on the canvas (which indicates start of a
draw) a new Stroke is created and the points where the stylus passed are
sampled and included in this newly created Stroke. Releasing the stylus (or
going out of Canvas) indicates the end of the current Stroke and all of the
opened canvases starts waiting for another new  Stroke  to be drawn. All
those Points and Strokes are already recorded on the canvas by stroke()
method of HTML 5 Canvas structure. 

The  current  system  sends  an  auto-completion  request  after  a  stroke  is
addded. If not, the system waits for 5 seconds to send the request. The auto
completion request is an  HttpPostRequest  using  Oboe.js [17] API.  The
request contains a stringified version of a JSON which has three elements:
the  request  ID  (Date  object),  array  of  image  bitmaps  (which  is  used  in
original iMotion) and the JSON representation of the sketch the user has
drawn. 

The  server  sends  a  response  containing  six  elements:  request  ID,  top
instances computed by the classifier of University of Basel, probabilities of
those instances, classes of top instances computed by our classifier (standard
pipeline), probabilities of those instances and best full sketches computed by
k-nearest neighbor algorithm.

When the response has been successfully received from the server, the client
takes the top instances and show them in two <div> block elements with a
green  background,  one  for  results  acquired  by  the  implementation  of
University  of  Basel  and  one  for  the  results  acquired  by  our  standard
implementation in  a pop-up fashion.  The probabilities  are  only  shown in
console. CSS code of the respective elements has been modified to show the
pop-up in a fixed position which is a bit higher than the original code. The
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suggestions are removed and the pop-up is disappeared after 5 seconds.

Figure 49: An example screen-shot of giving suggestions

 3.5.2 Back-end Integration
Back-end integration  has  three  main  steps:  providing  an  interface  to  the
server,  communicating  with  the  client,  and  training  for  the  k-nearest
neighbor of all sketches stored in .csv files.

To  provide  an  interface  to  the  sketch  server,  we  imported  the  entire
prediction  pipeline  of  our  standard  implementation.  The  paths  of  those
classes are appended to the system path respective to their relative path to
the working directory. Modules such as extractor.py had a name clash with
the original iMotion code. Those classes are merged for simplicity. Then a
main module is created and a method named runPrediction() has been
written in order for the server to run directly. This method specifies the path
to load and put already trained data a new  Predictor object  and the
predictor gives desired number of predictions (in our case, 5) for the given
JSON string. Having received the predictions, the server also finds the best
full sketch for every class included in the predictions to be displayed in the
website by using K-nearest neighbor algorithm.

The server has been built on the top of BaseHTTPServer, that handles the
requests using  do_POST() function. It reads the content of the request as
raw  data.  In  our  case,  the  raw data  is  a  JSON string.  json.loads()
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function converts this raw data into a dictionary. Through this dictionary,
the server extracts the bitmap representation and the representation we have
implemented in the client side and provides them as input to the respective
functions (in our project it is runPrediction()). Having received the class
names  as  output,  it  finds  the  best  full  sketch match to be  displayed by
putting  the  bitmap  and  sketch  representations  to  the  k-nearest  neighbor
functions. Finally, the server formats the response and sends it back to client.

To  find  the  best  full  sketch  match  for  auto-completion,  the  k-nearest
neighbor function of  scikit-learn [20] was used. For every sketch in Eitz
dataset,  we  firstly  extracted  the  features  of  all  sketch  instances  in  the
respective  .csv  files, then put them in an array and trained this in a new
NearestNeighbors object.  To  avoid  doing  this  process  every  time  we
started the sketch server, NearestNeighbors objects of the sketch classes
have been saved as files using Pickle serialization of Python.

One  issue  with  iMotion  is  that  the  server  sends  the  file  names  and
probabilities instead of the sketch directly. This means only the server can
act as a client to itself. We did not do anything about it since iMotion was
created for testing purposes and this addition would make the system slower.
In  case  iMotion  is  opened  the  public,  the  developers  can  send  sketches
encoded in  base64 through  Oboe requests which will display the sketches
one by one.

 4 Future Work & Conclusion
To  conclude,  during  the  summer  research  period,  we  ported  an  existing  work
regarding sketched symbol auto-completion to Python in order to raise the runtime
performance. Moreover, to see it in action, our students developed an Android user
interface together with a server back-end. In order to make this framework usable in
iMotion system, we also used the server implementation and modified the UI in a
way that  it  shows  the  suggestions  of  our  system together  with  the  suggestions
coming from the auto-completion pipeline written by University of Basel. At the
beginning of the period, our expectation was only to rewrite the original pipeline
without any amelioration. Thanks to their great effort, students implemented and
tested the pipeline earlier than we expected, then we were able to finish all of the
things we mentioned here. 

65



Yet, we believe in that there are still some missing parts in the puzzle. As the time
wasn't sufficient, we couldn't focus on different techniques of grouping sketches in
the alternative pipeline. The way sketch classes are grouped is the key part of the
alternative implementation and we believe in that there can be some other ways
which are waiting for being discovered and which are useful to beat the standard
pipeline.  Moreover,  accuracy  performance  of  the  pipeline  of  University  of  Basel
hasn't  been compared to our standard and alternative implementations yet.  We
don't still have any analyzable results to make a comparison among each other. In
the near future, our plans are to conduct a deeper research about sketch grouping
and to complete the analysis of the auto-completion pipeline of University of Basel
and deliver the integrated system to all the partners in the project.
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